Modulating the Antimicrobial Activity of Temporin L Through Introduction of Fluorinated Phenylalanine

Springer Science and Business Media LLC - Tập 23 - Trang 213-225 - 2016
Subbaiah Chennam Setty1, Soyar Horam2, Mukesh Pasupuleti2, Wahajul Haq1
1Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, India
2Division of Microbiology Central Drug Research Institute, Lucknow, India

Tóm tắt

Antimicrobial peptides (AMPs) are the promising future therapeutic candidates because of their multifunctional roles and unique mode of action against microbes. Despite several advantages, developing AMPs into therapeutic antibiotics is often associated with limitations, such as thermal and enzymatic stability, moderate antimicrobial activity and higher toxicity. We here report the synthesis of 2-fluoro- and 2,6-difluorophenyalanine, their introduction into naturally occurring antimicrobial peptide Temporin L (TL). We also report the antimicrobial and hemolytic activity of parent TL as well as the fluorinated variant in plasma and buffer conditions. Circular dichroism studies clearly show that fluorination reduces the helical propensity, thus accounting for lower activity. We further demonstrated that fluorinated TL can act as antimicrobial agents in creams and gels used for treating skin infections.

Tài liệu tham khảo

Aiyelabola T, Ojo I, Adebajo A, Ogunlusi G, Oyetunji O, Akinkunmi E, Adeoye A (2012) Synthesis, characterization and antimicrobial activities of some metal(II) amino acids’ complexes. Adv Biol Chem 2:268–273 Arai T, Maruo N, Sumida Y, Korosue C, Nishino N (1999) Spatially close porphyrin pair linked by the cyclic peptide Gramicidin S. Chem Commun 16:1503–1504 Balducci D, Contaldi S, Lazzari I, Porzi G (2009) A highly efficient stereocontrolled synthesis of (S)-2′ 6′-dimethyltyrosine [(S)-DMT]. Tetrahedron Asymmetry 20:1398–1401 Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250 de Souza Mendes C, de Souza Antunes A (2013) Pipeline of known chemical classes of antibiotics. Antibiotics 2:500–534 Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial beta-peptides and alpha-peptoids. Chem Biol Drug Des 77:107–116 Grieco P et al (2013) The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: identification of a potent anti-Candida peptide. Biochim Biophys Acta 1828:652–660 Haney EF, Nazmi K, Bolscher JG, Vogel HJ (2012) Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin. Biochem Cell Biol 90:362–377 Jiang Z, Vasil AI, Hale J, Hancock RE, Vasil ML, Hodges RS (2009) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Adv Exp Med Biol 611:561–562 Konai MM, Ghosh C, Yarlagadda V, Samaddar S, Haldar J (2014) Membrane active phenylalanine conjugated lipophilic norspermidine derivatives with selective antibacterial activity. J Med Chem 57:9409–9423 Lai JR, Epand RF, Weisblum B, Epand RM, Gellman SH (2006) Roles of salt and conformation in the biological and physicochemical behavior of protegrin-1 and designed analogues: correlation of antimicrobial, hemolytic, and lipid bilayer-perturbing activities. Biochemistry 45:15718–15730 Lee E et al (2014) Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1. PLoS One 9:e114453 Lehrer RI, Barton A, Ganz T (1988) Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J Immunol Methods 108:153–158 Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371–387 Loureiro JA et al (2014) Fluorinated beta-sheet breaker peptides. J Mater Chem 2:2259–2264 Mae M, Amii H, Uneyama K (2000) First synthesis of 3,3-difluoroserine and cysteine derivatives via Mg(0)-promoted selective Cî—¸F bond cleavage of trifluoromethylimines. Tetrahedron Lett 41:7893–7896 Mahalka AK, Kinnunen PK (2009) Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L. Biochim Biophys Acta 1788:1600–1609 Maisetta G et al (2013) pH-dependent disruption of Escherichia coli ATCC 25922 and model membranes by the human antimicrobial peptides hepcidin 20 and 25. FEBS J 280:2842–2854 Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmidtchen A (2011) Highly selective end-tagged antimicrobial peptides derived from PRELP. PLoS One 6:e16400 Mangoni ML et al (2011) Structure-activity relationship, conformational and biological studies of temporin L analogues. J Med Chem 54:1298–1307 McCloskey AP, Gilmore BF, Laverty G (2014) Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 3:791–821 Meng H, Kumar K (2007) Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J Am Chem Soc 129:15615–15622 Meng H, Krishnaji ST, Beinborn M, Kumar K (2008) Influence of selective fluorination on the biological activity and proteolytic stability of glucagon-like peptide-1. J Med Chem 51:7303–7307 Mercer DK, O’Neil DA (2013) Peptides as the next generation of anti-infectives. Future Med Chem 5:315–337 Molhoek EM et al (2010) Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents. Int J Antimicrob Agents 36:271–274 Moncla BJ, Pryke K, Rohan LC, Graebing PW (2011) Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Adv Biosci Biotechnol 2:404–408 Niemz A, Tirrell DA (2001) Self-association and membrane-binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 123:7407–7413 Pal T, Sonnevend A, Galadari S, Conlon JM (2005) Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2. Regul Pept 129:85–91 Pandurangan K, Kitchen JA, Blasco S, Paradisi F, Gunnlaugsson T (2014) Supramolecular pyridyl urea gels as soft matter with antibacterial properties against MRSA and/or E. coli. Chem Commun (Camb) 50:10819–10822 Papareddy P et al (2010) Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog 6:e1000857 Pasupuleti M, Walse B, Nordahl EA, Morgelin M, Malmsten M, Schmidtchen A (2007) Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans. J Biol Chem 282:2520–2528 Pasupuleti M, Walse B, Svensson B, Malmsten M, Schmidtchen A (2008) Rational design of antimicrobial C3a analogues with enhanced effects against staphylococci using an integrated structure and function-based approach. Biochemistry 47:9057–9070 Pasupuleti M, Chalupka A, Morgelin M, Schmidtchen A, Malmsten M (2009a) Tryptophan end-tagging of antimicrobial peptides for increased potency against Pseudomonas aeruginosa. Biochim Biophys Acta 1790:800–808 Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M (2009b) End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS ONE 4:e5285 Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32:143–171 Salwiczek M, Nyakatura EK, Gerling UI, Ye S, Koksch B (2012) Fluorinated amino acids: compatibility with native protein structures and effects on protein-protein interactions. Chem Soc Rev 41:2135–2171 Saviello MR, Malfi S, Campiglia P, Cavalli A, Grieco P, Novellino E, Carotenuto A (2010) New insight into the mechanism of action of the temporin antimicrobial peptides. Biochemistry 49:1477–1485 Schmidtchen A, Pasupuleti M, Morgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M (2009) Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J Biol Chem 284:17584–17594 Schmidtchen A, Pasupuleti M, Malmsten M (2014) Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interface Sci 205:265–274 Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M (2009) Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother 53:593–602 Subbaiah CS, Haq W (2014) Efficient stereocontrolled synthesis of sitagliptin phosphate. Tetrahedron Asymmetry 25:1026–1030 Thirumalai MK, Roy A, Sanikommu S, Arockiaraj J, Pasupuleti M (2014) A simple, robust enzymatic-based high-throughput screening method for antimicrobial peptides discovery against Escherichia coli. J Pept Sci 20:341–348 Waters ML (2002) Aromatic interactions in model systems. Curr Opin Chem Biol 6:736–741 Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175 Wolny M, Batchelor M, Knight PJ, Paci E, Dougan L, Peckham M (2014) Stable single alpha-helices are constant force springs in proteins. J Biol Chem 289:27825–27835 Yeaman MR, Gank KD, Bayer AS, Brass EP (2002) Synthetic peptides that exert antimicrobial activities in whole blood and blood-derived matrices. Antimicrob Agents Chemother 46:3883–3891 Zaknoon F, Goldberg K, Sarig H, Epand RF, Epand RM, Mor A (2012) Antibacterial properties of an oligo-acyl-lysyl hexamer targeting Gram-negative species. Antimicrob Agents Chemother 56:4827–4832