Ag-bridged Ag2O nanowire network/TiO2 nanotube array p–n heterojunction as a highly efficient and stable visible light photocatalyst
Tài liệu tham khảo
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Tang, 2012, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, J. Hazard. Mater., 241–242, 323, 10.1016/j.jhazmat.2012.09.050
Li, 2001, Study of Au/Au3+–TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol., 35, 2381, 10.1021/es001752w
Byeon, 2014, Au–TiO2 nanoscale heterodimers synthesis from an ambient spark discharge for efficient photocatalytic and photothermal activity, ACS Appl. Mater. Interfaces, 6, 763, 10.1021/am405004a
Zhang, 2013, Reduced graphene oxide and PbS nanoparticles co-modified TiO2 nanotube arrays as a recyclable and stable photocatalyst for efficient degradation of pentachlorophenol, Appl. Catal. A-Gen., 457, 78, 10.1016/j.apcata.2013.03.011
Yang, 2010, High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p–n heterojunction network catalyst, Environ. Sci. Technol., 44, 7641, 10.1021/es101711k
Lyu, 2011, Investigation of relative stability of different facets of Ag2O nanocrystals through face-selective etching, J. Phys. Chem. C, 115, 17768, 10.1021/jp2059479
Ohtani, 1993, Photoactivation of silver loaded on titanium(IV) oxide for room-temperature decomposition of ozone, J. Photochem. Photobiol. A, 71, 195, 10.1016/1010-6030(93)85073-H
Wang, 2011, Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity, Chem.-Eur. J., 17, 7777, 10.1002/chem.201101032
Wang, 2012, Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities, J. Mater. Chem., 22, 21189, 10.1039/c2jm35010f
Wang, 2008, Ag@ AgCl: a highly efficient and stable photocatalyst active under visible light, Angew. Chem. Int. Ed., 47, 7931, 10.1002/anie.200802483
Zhang, 2011, Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase, Appl. Catal. B-Environ., 106, 445, 10.1016/j.apcatb.2011.06.002
Hu, 2010, Plasmon-induced photodegradation of toxic pollutants with Ag–AgI/Al2O3 under visible-light irradiation, J. Am. Chem. Soc., 132, 857, 10.1021/ja907792d
Chen, 2013, Enhanced adsorption and photocatalytic degradation of high-concentration methylene blue on Ag2O-modified TiO2-based nanosheet, Chem. Eng. J., 221, 283, 10.1016/j.cej.2013.02.019
Zhou, 2014, Phase transformation and enhanced photocatalytic activity of S-doped Ag2O/TiO2 heterostructured nanobelts, Nanoscale, 6, 4698, 10.1039/C3NR06565K
Jones, 1956, Oxide formation and overvoltage of oxygen on lead and silver anodes in alkaline solution, Trans. Faraday Soc., 52, 1003, 10.1039/tf9565201003
Neugebauer, 1962, Electrical conduction mechanism in ultrathin, evaporated metal films, J. Appl. Phys., 33, 74, 10.1063/1.1728531
Ye, 1999, Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives, IEEE Trans. Electron. Packag. Manuf., 22, 299, 10.1109/6104.816098
Zhuang, 2007, Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity, Environ. Sci. Technol., 41, 4735, 10.1021/es0702723
Subramanian, 2001, Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?, J. Phys. Chem. B, 105, 11439, 10.1021/jp011118k
Chung, 1993, Degradation azo dyes by environmental microorganisms and helminthes, Environ. Toxicol. Chem., 12, 2121
Tanaka, 2000, Photocatalytic degradation of commercial azo dyes, Water Res., 34, 327, 10.1016/S0043-1354(99)00093-7
Vinodgopal, 1992, Photochemistry on surfaces: photodegradation of 1,3-diphenylisobenzofuran over metal oxide particles, J. Phys. Chem., 96, 5053, 10.1021/j100191a058
Liu, 2010, Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film, J. Hazard. Mater., 182, 912, 10.1016/j.jhazmat.2010.07.007
Li, 2008, The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites, J. Am. Chem. Soc., 130, 5402, 10.1021/ja711118u
Yun, 2011, A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state, ACS Nano, 5, 4084, 10.1021/nn2006738
Ghilane, 2007, Facile electrochemical characterization of core/shell nanoparticles. Ag core/Ag2O shell structures, Nano Lett., 7, 1406, 10.1021/nl070268p
Hirose, 2009, A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles, J. Phys. Conf. Ser., 165, 12074, 10.1088/1742-6596/165/1/012074