Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity

Elsevier BV - Tập 241 - Trang 360-368 - 2017
Tuoyuan Cheng1, Chun-Hai Wei1, TorOve Leiknes1
1Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Tài liệu tham khảo

Alcántara, 2015, Evaluation of wastewater treatment in a novel anoxic-aerobic algal-bacterial photobioreactor with biomass recycling through carbon and nitrogen mass balances, Bioresour. Technol., 191, 173, 10.1016/j.biortech.2015.04.125 Atta, 2013, Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris, Bioresour. Technol., 148, 373, 10.1016/j.biortech.2013.08.162 Bacchin, 2006, Critical and sustainable fluxes: theory, experiments and applications, J. Membr. Sci., 281, 42, 10.1016/j.memsci.2006.04.014 Barranguet, 2005, Divergent composition of algal-bacterial biofilms developing under various external factors, Eur. J. Phycol., 40, 1, 10.1080/09670260400009882 Beuckels, 2015, Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment, Water Res., 77, 98, 10.1016/j.watres.2015.03.018 Bilad, 2012, Harvesting microalgal biomass using submerged microfiltration membranes, Bioresour. Technol., 111, 343, 10.1016/j.biortech.2012.02.009 Bilad, 2014, Membrane technology in microalgae cultivation and harvesting: a review, Biotechnol. Adv., 32, 1283, 10.1016/j.biotechadv.2014.07.008 Boelee, 2012, Scenario analysis of nutrient removal from municipal wastewater by microalgal biofilms, Water, 4, 460, 10.3390/w4020460 Boonchai, 2015, Microalgae membrane photobioreactor for further removal of nitrogen and phosphorus from secondary sewage effluent, Korean J. Chem. Eng., 32, 2047, 10.1007/s11814-015-0043-9 Brányiková, 2011, Microalgae - novel highly efficient starch producers, Biotechnol. Bioeng., 108, 766, 10.1002/bit.23016 Brennan, 2010, Biofuels from microalgae - a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557, 10.1016/j.rser.2009.10.009 Castaing, 2011, Immersed hollow fibres microfiltration (MF) for removing undesirable micro-algae and protecting semi-closed aquaculture basins, Desalination, 276, 386, 10.1016/j.desal.2011.03.081 Clescerl, 1999 Courchesne, 2009, Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches, J. Biotechnol., 141, 31, 10.1016/j.jbiotec.2009.02.018 Dismukes, 2008, Aquatic phototrophs: efficient alternatives to land-based crops for biofuels, Curr. Opin. Biotechnol., 19, 235, 10.1016/j.copbio.2008.05.007 EPA, U.S., 2010. Method 1664, Revision B: n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry. González-Fernández, 2012, Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation, Biotechnol. Adv., 30, 1655, 10.1016/j.biotechadv.2012.07.003 Holmstrom, 2000, Bacterial interactions with marine fouling organisms Hultberg, 2016, Microalgal growth in municipal wastewater treated in an anaerobic moving bed biofilm reactor, Bioresour. Technol., 207, 19, 10.1016/j.biortech.2016.02.001 Judd, 2015, Algal remediation of CO2 and nutrient discharges: a review, Water Res., 87, 356, 10.1016/j.watres.2015.08.021 Krause-Jensen, 1996, Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability, Mar. Ecol. Prog. Ser., 134, 207, 10.3354/meps134207 Lee, 2003, Review of advances in biological CO2 mitigation technology, Biotechnol. Bioprocess Eng., 8, 354, 10.1007/BF02949279 Li, 2010, Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii, Biotechnol. Bioeng., 107, 258, 10.1002/bit.22807 Li, 2012, Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum, Biomass Bioenerg., 42, 199, 10.1016/j.biombioe.2012.03.010 Lin, 2011, Opportunities and challenges for biodiesel fuel, Appl. Energy, 88, 1020, 10.1016/j.apenergy.2010.09.029 Liu, 2013, Attached cultivation technology of microalgae for efficient biomass feedstock production, Bioresour. Technol., 127, 216, 10.1016/j.biortech.2012.09.100 Loladze, 2011, The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio, Ecol. Lett., 14, 244, 10.1111/j.1461-0248.2010.01577.x Lutzu, 2016, Feasibility of using brewery wastewater for biodiesel production and nutrient removal by Scenedesmus dimorphus, Environ. Technol., 37, 1568, 10.1080/09593330.2015.1121292 Markou, 2015, Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: optimization of nutrient removal and biomass production, Bioresour. Technol., 193, 35, 10.1016/j.biortech.2015.06.071 Órpez, 2009, Growth of the microalga Botryococcus braunii in secondarily treated sewage, Desalination, 246, 625, 10.1016/j.desal.2008.07.016 Oswald, 2003, My sixty years in applied algology, J. Appl. Phycol., 15, 99, 10.1023/A:1023871903434 Peccia, 2013, Nitrogen supply is an important driver of sustainable microalgae biofuel production, Trends Biotechnol., 31, 134, 10.1016/j.tibtech.2013.01.010 Pittman, 2011, The potential of sustainable algal biofuel production using wastewater resources, Bioresour. Technol., 102, 17, 10.1016/j.biortech.2010.06.035 PME, 2001. Kingdom of Saudi Arabia National Environmental Standard Industrial and Municipal Wastewater Discharges. PME Reference, 17. Rivas, 2010, Interactions of Botryococcus braunii cultures with bacterial biofilms, Microb. Ecol., 60, 628, 10.1007/s00248-010-9686-6 Rodolfi, 2009, Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100, 10.1002/bit.22033 Ruiz-Marin, 2010, Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, Bioresour. Technol., 101, 58, 10.1016/j.biortech.2009.02.076 Ruiz-Martinez, 2014, Mixed microalgae culture for ammonium removal in the absence of phosphorus: effect of phosphorus supplementation and process modeling, Process Biochem., 49, 2249, 10.1016/j.procbio.2014.09.002 Schenk, 2008, Second generation biofuels: high-efficiency microalgae for biodiesel production, Bioenergy Res., 1, 20, 10.1007/s12155-008-9008-8 Shen, 2015, Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency, Bioresour. Technol., 193, 68, 10.1016/j.biortech.2015.06.050 Stephens, 2010, An economic and technical evaluation of microalgal biofuels, Nat. Biotechnol., 28, 126, 10.1038/nbt0210-126 Sterner, 2002 Wang, 2010, Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant, Appl. Biochem. Biotechnol., 162, 1174, 10.1007/s12010-009-8866-7 Wei, 2014, Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment, Bioresour. Technol., 166, 326, 10.1016/j.biortech.2014.05.053 Weldy, 2007, Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity, J. Undergraduate Res., 7, 115 Wilkie, 2002, Recovery of dairy manure nutrients by benthic freshwater algae, Bioresour. Technol., 84, 81, 10.1016/S0960-8524(02)00003-2 Yan, 2013, Effects of various LED light qualities and light intensity supply strategies on purification of slurry from anaerobic digestion process by Chlorella vulgaris, Int. Biodeterior. Biodegrad., 79, 81, 10.1016/j.ibiod.2013.01.016