Effect of (TiO2: ZnO) ratio on the anti-fouling properties of bio-inspired nanofiltration membranes
Tài liệu tham khảo
Bellona, 2004, Factors affecting the rejection of organic solutes during NF/RO treatment - A literature review, Water Res., 38, 2795, 10.1016/j.watres.2004.03.034
Mohammad, 2002, Understanding the steric and charge contributions in NF membranes using increasing MWCO polyamide membranes, Desalination, 147, 205, 10.1016/S0011-9164(02)00535-0
Fu, 2011, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92, 407, 10.1016/j.jenvman.2010.11.011
Vrijenhoek, 2001, Influence of membrane properties, solution chemistry, and hydrodynamics on colloidal fouling of reverse osmosis and nanofiltration membranes, J. Memb. Sci., 188, 115, 10.1016/S0376-7388(01)00376-3
Khulbe, 2000, Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy; a review, Polymer (Guildf)., 41, 1917, 10.1016/S0032-3861(99)00359-6
Ivnitsky, 2010, Biofouling formation and modeling in nanofiltration membranes applied to wastewater treatment, J. Memb. Sci., 360, 165, 10.1016/j.memsci.2010.05.007
Ivnitsky, 2005, Characterization of membrane biofouling in nanofiltration processes of wastewater treatment, Desalination, 185, 255, 10.1016/j.desal.2005.03.081
Choudhury, 2018, Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes, J. Mater. Chem. A, 6, 313, 10.1039/C7TA08627J
Abid, 2017, A review of efforts to reduce membrane fouling by control of feed spacer characteristics, Desalination, 420, 384, 10.1016/j.desal.2017.07.019
Ding, 2016, Mussel-inspired polydopamine for bio-surface functionalization, Biosurface Biotribol., 2, 121, 10.1016/j.bsbt.2016.11.001
Karkhanechi, 2014, Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization, Desalination, 337, 23, 10.1016/j.desal.2014.01.007
Wu, 2015, Dopamine-melanin nanofilms for biomimetic structural coloration, Biomacromolecules, 16, 660, 10.1021/bm501773c
Kasemset, 2013, Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation, J. Memb. Sci., 425–426, 208, 10.1016/j.memsci.2012.08.049
Kim, 2014, Polydopamine coating effects on ultrafiltration membrane to enhance power density and mitigate biofouling of ultrafiltration microbial fuel cells (UF-MFCs), Water Res., 54, 62, 10.1016/j.watres.2014.01.045
Y. Xiang, F. Liu, L. Xue, Under seawater superoleophobic PVDF membrane inspired by polydopamine for efficient oil/seawater separation, Elsevier, 2015. doi: 10.1016/j.memsci.2014.11.052.
Vaselbehagh, 2014, Improved antifouling of anion-exchange membrane by polydopamine coating in electrodialysis process, Desalination, 332, 126, 10.1016/j.desal.2013.10.031
Liu, 2013, Polydopamine coating - Surface modification of polyester filter and fouling reduction, Sep. Purif. Technol., 118, 226, 10.1016/j.seppur.2013.07.003
Ryou, 2012, Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators, Adv. Energy Mater., 2, 645, 10.1002/aenm.201100687
Barclay, 2017, Versatile surface modification using polydopamine and related polycatecholamines: chemistry, structure, and applications, Adv. Mater. Interfaces., 4, 1, 10.1002/admi.201601192
Miller, 2012, Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control, Water Res., 46, 3737, 10.1016/j.watres.2012.03.058
Miller, 2014, Constant flux crossflow filtration evaluation of surface-modified fouling-resistant membranes, J. Memb. Sci., 452, 171, 10.1016/j.memsci.2013.10.037
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science (80-.) 318 (2007) 426–430. doi: 10.1126/science.1147241.Mussel-Inspired.
Zhang, 2017, CuSO4/H2O2-Triggered polydopamine/poly(sulfobetaine methacrylate) coatings for antifouling membrane surfaces, Langmuir, 33, 1210, 10.1021/acs.langmuir.6b03948
Zhu, 2016, Elevated salt transport of antimicrobial loose nanofiltration membranes enabled by copper nanoparticles: Via fast bioinspired deposition, J. Mater. Chem. A., 4, 13211, 10.1039/C6TA05661J
Mohammad, 2015, Nanofiltration membranes review: recent advances and future prospects, Desalination, 356, 226, 10.1016/j.desal.2014.10.043
Ng, 2013, Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review, Desalination, 308, 15, 10.1016/j.desal.2010.11.033
Homayoonfal, 2013, Effect of metal and metal oxide nanoparticle impregnation route on structure and liquid filtration performance of polymeric nanocomposite membranes: A comprehensive review, Desalin. Water Treat., 51, 3295, 10.1080/19443994.2012.749055
Rajh, 2002, Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk, J. Phys. Chem. B., 106, 10543, 10.1021/jp021235v
Dalsin, 2005, Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG - DOPA, Langmuir, 21, 640, 10.1021/la048626g
Rodenstein, 2010, Fabricating chemical gradients on oxide surfaces by means of fluorinated, catechol-based, self-assembled monolayers, Langmuir, 26, 16211, 10.1021/la100805z
Ye, 2011, Bioinspired catecholic chemistry for surface modification, Chem. Soc. Rev., 40, 4244, 10.1039/c1cs15026j
De Filpo, 2018, Chemical vapor deposition of photocatalyst nanoparticles on PVDF membranes for advanced oxidation processes, Membranes (Basel)., 8, 35, 10.3390/membranes8030035
Yang, 2014, Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation, J. Mater. Chem. A., 2, 10225, 10.1039/C4TA00143E
Zhang, 2017, Remarkable Anti-Fouling performance of TiO2-modified TFC membranes with mussel-inspired polydopamine binding, Appl. Sci., 7, 81, 10.3390/app7010081
Zhang, 2013, Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine, J. Memb. Sci., 437, 179, 10.1016/j.memsci.2013.02.059
Zhu, 2018, High- flux thin film composite membranes for nano filtration mediated by a rapid co-deposition of polydopamine / piperazine, J. Memb. Sci., 554, 97, 10.1016/j.memsci.2018.03.004
S.R. Lakhotia, M. Mukhopadhyay, P. Kumari, Iron oxide (FeO) nanoparticles embedded thin-film nanocomposite T nanofiltration (NF) membrane for water treatment, 211 (2019) 98–107.
Yang, 2016, In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane, Environ. Sci. Technol., 50, 9543, 10.1021/acs.est.6b01867
Lu, 2017, Layered double hydroxide nanoparticle modified forward osmosis membranes via polydopamine immobilization with significantly enhanced chlorine and fouling resistance, Desalination., 421, 99, 10.1016/j.desal.2017.04.030
Kim, 2017, Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity, J. Colloid Interface Sci., 513, 566, 10.1016/j.jcis.2017.11.061
Noshirvani, 2017, Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles, Int. J. Biol. Macromol., 99, 530, 10.1016/j.ijbiomac.2017.03.007
Peyravi, 2014, Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration, Chem. Eng. J., 241, 155, 10.1016/j.cej.2013.12.024
Zhao, 2015, Multiple antifouling capacities of hybrid membranes derived from multifunctional titania nanoparticles, J. Memb. Sci., 495, 226, 10.1016/j.memsci.2015.08.026
Zhu, 2018, A rapid deposition of polydopamine coatings induced by iron (III) chloride / hydrogen peroxide for loose nanofiltration, J. Colloid Interface Sci., 523, 86, 10.1016/j.jcis.2018.03.072
Khorshidi, 2018, Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity, Sci. Rep., 8, 784, 10.1038/s41598-017-18724-w
Soleymani Lashkenari, 2019, Biofouling mitigation of bilayer polysulfone membrane assisted by zinc oxide-polyrhodanine couple nanoparticle, Prog. Org. Coatings., 129, 147, 10.1016/j.porgcoat.2018.12.012
Q.E. Ambient Secretary, Ambient secretary government of Quito Ecuador, 2018. http://www.quitoambiente.gob.ec/ambiente/index.php/radiacion-ultravioleta-app.
Rajamanickam, 2012, Photocatalytic degradation of an organic pollutant, 4-nitrophenol by zinc oxide - UV process, Res. J. Chem. Environ., 9, S1858
Hong, 2012, Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation, Adv. Funct. Mater., 22, 4711, 10.1002/adfm.201201156
Ball, 2018, Polydopamine films and particles with catalytic activity, Catal. Today., 301, 196, 10.1016/j.cattod.2017.01.031
Liu, 2016, Surface-independent one-pot chelation of copper ions onto filtration membranes to provide antibacterial properties, Chem. Commun., 52, 12245, 10.1039/C6CC06015C
F. Bernsmann, V. Ball, F. Addiego, A. Ponche, M. Michel, J.J. de A. Gracio, V. Toniazzo, D. Ruch, Dopamine−Melanin film deposition depends on the used oxidant and buffer solution, Langmuir 27 (2011) 2819–2825. doi: 10.1021/la104981s.
Guvendiren, 2008, Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels, Biomacromolecules, 9, 122, 10.1021/bm700886b
Ran, 2018, Growing ZnO nanoparticles on polydopamine-templated cotton fabrics for durable antimicrobial activity and UV protection, Polymers (Basel), 10, 495, 10.3390/polym10050495
Ou, 2010, Fabrication and biocompatibility investigation of TiO 2 films on the polymer substrates obtained via a novel and versatile route, Colloids Surfaces B Biointerfaces, 76, 123, 10.1016/j.colsurfb.2009.10.024
Koch, 2009, Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 367, 1487, 10.1098/rsta.2009.0022
Cui, 2019, Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation, Sep. Purif. Technol., 209, 434, 10.1016/j.seppur.2018.03.054
Yun, 2014, Properties and performances of polymer composite membranes correlated with monomer and polydopamine for flue gas dehydration by water vapor permeation, Chem. Eng. J., 258, 348, 10.1016/j.cej.2014.07.038
Mansouri, 2010, Strategies for controlling biofouling in membrane filtration systems: Challenges and opportunities, J. Mater. Chem., 20, 4567, 10.1039/b926440j
Sotto, 2011, Effect of nanoparticle aggregation at low concentrations of TiO 2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO 2 membranes, J. Colloid Interface Sci., 363, 540, 10.1016/j.jcis.2011.07.089
Watanabe, 1999, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films., 351, 260, 10.1016/S0040-6090(99)00205-9
Ang, 2019, Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles, Sep. Purif. Technol., 224, 113, 10.1016/j.seppur.2019.05.018
Zangeneh, 2018, A novel photocatalytic self-cleaning PES nano fi ltration membrane incorporating triple metal-nonmetal doped TiO 2 (K-B-N-TiO 2) for post treatment of biologically treated palm oil mill e ffl uent, React. Funct. Polym., 127, 139, 10.1016/j.reactfunctpolym.2018.04.008
Bhushan, 2012, Bioinspired structured surfaces, Langmuir, 28, 1698, 10.1021/la2043729
Ng, 2011, Optimizing the incorporation of silica nanoparticles in polysulfone/poly(vinyl alcohol) membranes with response surface methodology law, J. Appl. Polym. Sci., 121, 1804, 10.1002/app.33628
Lakshmi Prasanna, 2017, Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO, Mater. Sci. Eng. C., 77, 1027, 10.1016/j.msec.2017.03.280
Feris, 2010, Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium pseudomonas aeruginosa PAO1, Langmuir., 26, 4429, 10.1021/la903491z
Zhang, 2011, Size effects on adsorption of hematite nanoparticles on E. coli cells, Environ. Sci. Technol., 45, 2172, 10.1021/es103376y
MacLean, 2004, Experimental studies of bacteria-iodide adsorption interactions, Chem. Geol., 212, 229, 10.1016/j.chemgeo.2004.08.014
Parak, 2012, Antibacterial properties of nanoparticles, Trends Biotechnol., 30, 499, 10.1016/j.tibtech.2012.06.004
Sirelkhatim, 2015, Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nano-Micro Lett., 7, 219, 10.1007/s40820-015-0040-x
Hairom, 2014, Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment, Sep. Purif. Technol., 137, 74, 10.1016/j.seppur.2014.09.027
Senthilraja, 2018, Synthesis and characterization of bimetallic nanocomposite and its photocatalytic, antifungal and antibacterial activity, Sep. Purif. Technol., 202, 373, 10.1016/j.seppur.2018.04.015
Sugarman, 1983, Zinc and infection, Rev. Infect. Dis., 5, 137, 10.1093/clinids/5.1.137
Sathe, 2016, Removal and regrowth inhibition of microalgae using visible light photocatalysis with ZnO nanorods: A green technology, Sep. Purif. Technol., 162, 61, 10.1016/j.seppur.2016.02.007
Radke, 1994, Effect of abscess fluid supernatants on the kinetics of Candida albicans growth, Clin. Immunol. Immunopathol., 73, 344, 10.1006/clin.1994.1208
S. Atmaca, K. Gül, R. Çiçek, The Effect of Zinc On Microbial Growth, Tr. J. Med. Sci. 28 (2998) 595–597.
Haghighi, 2011, Light-induced antifungal activity of TiO 2 nanoparticles/ZnO nanowires, Appl. Surf. Sci., 257, 10096, 10.1016/j.apsusc.2011.06.145
Adams, 2006, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Res., 40, 3527, 10.1016/j.watres.2006.08.004
Yalcinkaya, 2017, Quantitative evaluation of antibacterial activities of nanoparticles (ZnO, TiO2, ZnO/TiO2, SnO2, CuO, ZrO2, and AgNO3) incorporated into polyvinyl butyral nanofibers, Polym. Adv. Technol., 28, 137, 10.1002/pat.3883
Talebian, 2013, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties, J. Photochem. Photobiol. B Biol., 120, 66, 10.1016/j.jphotobiol.2013.01.004
Soltani, 2013, Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation, J. Mol. Catal. A Chem., 377, 197, 10.1016/j.molcata.2013.05.004
Rani, 2018, Sun-light driven rapid photocatalytic degradation of methylene blue by poly(methyl methacrylate)/metal oxide nanocomposites, Colloids Surfaces A Physicochem. Eng. Asp., 559, 136, 10.1016/j.colsurfa.2018.09.040
Raizada, 2014, Solar photocatalytic activity of nano-ZnO supported on activatedcarbon or brick grain particles: Role of adsorption in dye degradation, Appl. Catal. A Gen., 486, 159, 10.1016/j.apcata.2014.08.043
Wang, 2009, Photocatalytic degradation of organic dyes with Er3+: YAlO3/ZnO composite under solar light, Sol. Energy Mater. Sol. Cells., 93, 355, 10.1016/j.solmat.2008.11.017
Štrbac, 2018, Photocatalytic degradation of Naproxen and methylene blue: Comparison between ZnO, TiO 2 and their mixture, Process Saf. Environ. Prot., 113, 174, 10.1016/j.psep.2017.10.007
Moradi, 2016, The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite, J. Saudi Chem. Soc., 20, 373, 10.1016/j.jscs.2012.08.002
Prasannalakshmi, 2017, Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis, Mater. Sci. Semicond. Process., 61, 114, 10.1016/j.mssp.2017.01.008
Tian, 2009, Photocatalyst of TiO2/ZnO nano composite film: Preparation, characterization, and photodegradation activity of methyl orange, Surf. Coatings Technol., 204, 205, 10.1016/j.surfcoat.2009.07.008
Firdaus, 2012, Characterization of ZnO and ZnO: TiO2 thin films prepared by sol-gel spray-spin coating technique, Procedia Eng., 41, 1367, 10.1016/j.proeng.2012.07.323
Delsouz Khaki, 2018, Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation, J. Mol. Liq. 258, 354, 10.1016/j.molliq.2017.11.030