Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy
Tóm tắt
Pancreatic cancer (PC) is a lethal malignancy primarily driven by activated Kras mutations and characterized by the deregulation of several genes including mucins. Previous studies on mucins have identified their significant role in both benign and malignant human diseases including PC progression and metastasis. However, the initiation of MUC expression during PC remains unknown because of lack of early stage tumor tissues from PC patients. In the present study, we have evaluated stage specific expression patterns of mucins during mouse PC progression in (KrasG12D;Pdx1-Cre (KC)) murine PC model from pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC) by immunohistochemistry and quantitative real-time PCR. In agreement with previous studies on human PC, we observed a progressive increase in the expression of mucins particularly Muc1, Muc4 and Muc5AC in the pancreas of KC (as early as PanIN I) mice with advancement of PanIN lesions and PDAC both at mRNA and protein levels. Additionally, mucin expression correlated with the increased expression of inflammatory cytokines IFN-γ (p < 0.0062), CXCL1 (p < 0.00014) and CXCL2 (p < 0.08) in the pancreas of KC mice, which are known to induce mucin expression. Further, we also observed progressive increase in inflammation in pancreas of KC mice from 10 to 50 weeks of age as indicated by the increase in the macrophage infiltration. Overall, this study corroborates with previous human studies that indicated the aberrant overexpression of MUC1, MUC4 and MUC5AC mucins during the progression of PC. Our study reinforces the potential utility of the KC murine model for determining the functional role of mucins in PC pathogenesis by crossing KC mice with corresponding mucin knockout mice and evaluating mucin based diagnostic and therapeutic approaches for lethal PC.
Tài liệu tham khảo
Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62: 10-29. 10.3322/caac.20138.
Matsuno S, Egawa S, Fukuyama S, Motoi F, Sunamura M, Isaji S: Pancreatic cancer registry in Japan: 20years of experience. Pancreas. 2004, 28: 219-230. 10.1097/00006676-200404000-00002.
Sultana A, Tudur SC, Cunningham D, Starling N, Neoptolemos JP, Ghaneh P: Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer: results of secondary end points analyses. Br J Cancer. 2008, 99: 6-13. 10.1038/sj.bjc.6604436.
Fry LC, Monkemuller K, Malfertheiner P: Molecular markers of pancreatic cancer: development and clinical relevance. Langenbecks Arch Surg. 2008, 393: 883-890. 10.1007/s00423-007-0276-0.
Chaturvedi P, Singh AP, Moniaux N, Senapati S, Chakraborty S, Meza JL: MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol Cancer Res. 2007, 5: 309-320. 10.1158/1541-7786.MCR-06-0353.
Moniaux N, Andrianifahanana M, Brand RE, Batra SK: Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br J Cancer. 2004, 91: 1633-1638.
Chauhan SC, Singh AP, Ruiz F, Johansson SL, Jain M, Smith LM: Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Mod Pathol. 2006, 19: 1386-1394. 10.1038/modpathol.3800646.
Hollingsworth MA, Swanson BJ: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004, 4: 45-60. 10.1038/nrc1251.
Torres MP, Chakraborty S, Souchek J, Batra SK: Mucin-based targeted pancreatic Cancer Therapy. Curr Pharm Des. 2012, 18 (17): 2472-2481. 10.2174/13816128112092472.
Andrianifahanana M, Moniaux N, Schmied BM, Ringel J, Friess H, Hollingsworth MA: Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin Cancer Res. 2001, 7: 4033-4040.
Jhala N, Jhala D, Vickers SM, Eltoum I, Batra SK, Manne U: Biomarkers in Diagnosis of pancreatic carcinoma in fine-needle aspirates. Am J Clin Pathol. 2006, 126: 572-579. 10.1309/CEV30BE088CBDQD9.
Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K: Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res. 2003, 63: 8614-8622.
Takikita M, Altekruse S, Lynch CF, Goodman MT, Hernandez BY, Green M: Associations between selected biomarkers and prognosis in a population-based pancreatic cancer tissue microarray. Cancer Res. 2009, 69: 2950-2955. 10.1158/0008-5472.CAN-08-3879.
Westgaard A, Schjolberg AR, Cvancarova M, Eide TJ, Clausen OP, Gladhaug IP: Differentiation markers in pancreatic head adenocarcinomas: MUC1 and MUC4 expression indicates poor prognosis in pancreatobiliary differentiated tumours. Histopathology. 2009, 54: 337-347. 10.1111/j.1365-2559.2009.03227.x.
Tamada S, Shibahara H, Higashi M, Goto M, Batra SK, Imai K: MUC4 is a novel prognostic factor of extrahepatic bile duct carcinoma. Clin Cancer Res. 2006, 12: 4257-4264. 10.1158/1078-0432.CCR-05-2814.
Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA: Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem. 1990, 265: 15294-15299.
Spicer AP, Rowse GJ, Lidner TK, Gendler SJ: Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem. 1995, 270: 30093-30101. 10.1074/jbc.270.50.30093.
Tinder TL, Subramani DB, Basu GD, Bradley JM, Schettini J, Million A: MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma. J Immunol. 2008, 181: 3116-3125.
Yonezawa S, Higashi M, Yamada N, Yokoyama S, Goto M: Significance of mucin expression in pancreatobiliary neoplasms. J Hepatobiliary Pancreat Sci. 2010, 17: 108-124. 10.1007/s00534-009-0174-7.
Chaturvedi P, Singh AP, Chakraborty S, Chauhan SC, Bafna S, Meza JL: MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 2008, 68: 2065-2070. 10.1158/0008-5472.CAN-07-6041.
Tsutsumida H, Swanson BJ, Singh PK, Caffrey TC, Kitajima S, Goto M: RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin Cancer Res. 2006, 12: 2976-2987. 10.1158/1078-0432.CCR-05-1197.
Chaturvedi P, Singh AP, Batra SK: Structure, evolution, and biology of the MUC4 mucin. FASEB J. 2008, 22: 966-981.
Inatomi T, Tisdale AS, Zhan Q, Spurr-Michaud S, Gipson IK: Cloning of rat Muc5AC mucin gene: comparison of its structure and tissue distribution to that of human and mouse homologues. Biochem Biophys Res Commun. 1997, 236: 789-797. 10.1006/bbrc.1997.7051.
Moniaux N, Nollet S, Porchet N, Degand P, Laine A, Aubert JP: Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem J. 1999, 338 (Pt 2): 325-333.
Spicer AP, Parry G, Patton S, Gendler SJ: Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. J Biol Chem. 1991, 266: 15099-15109.
Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, DePinho RA: Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006, 20: 1218-1249. 10.1101/gad.1415606.
Torres MP, Rachagani S, Purohit V, Pandey P, Joshi S, Moore ED: Graviola: A novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett. 2012, 323 (1): 29-40. 10.1016/j.canlet.2012.03.031.
Moniaux N, Chaturvedi P, Varshney GC, Meza JL, Rodriguez-Sierra JF, Aubert JP: Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. Br J Cancer. 2007, 97: 345-357. 10.1038/sj.bjc.6603868.
Nagata K, Horinouchi M, Saitou M, Higashi M, Nomoto M, Goto M: Mucin expression profile in pancreatic cancer and the precursor lesions. J Hepatobiliary Pancreat Surg. 2007, 14: 243-254. 10.1007/s00534-006-1169-2.
Sclabas GM, Fujioka S, Schmidt C, Evans DB, Chiao PJ: NF-kappaB in pancreatic cancer. Int J Gastrointest Cancer. 2003, 33: 15-26. 10.1385/IJGC:33:1:15.
Ji H, Houghton AM, Mariani TJ, Perera S, Kim CB, Padera R: K-ras activation generates an inflammatory response in lung tumors. Oncogene. 2006, 25: 2105-2112. 10.1038/sj.onc.1209237.
Andrianifahanana M, Singh AP, Nemos C, Ponnusamy MP, Moniaux N, Mehta PP: IFN-gamma-induced expression of MUC4 in pancreatic cancer cells is mediated by STAT-1 upregulation: a novel mechanism for IFN-gamma response. Oncogene. 2007, 26: 7251-7261. 10.1038/sj.onc.1210532.
Voynow JA, Young LR, Wang Y, Horger T, Rose MC, Fischer BM: Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol. 1999, 276: L835-L843.
Wu YM, Nowack DD, Omenn GS, Haab BB: Mucin glycosylation is altered by pro-inflammatory signaling in pancreatic-cancer cells. J Proteome Res. 2009, 8: 1876-1886. 10.1021/pr8008379.
Rachagani S, Torres MP, Moniaux N, Batra SK: Current status of mucins in the diagnosis and therapy of cancer. Biofactors. 2009, 35: 509-527. 10.1002/biof.64.
Chakraborty S, Baine MJ, Sasson AR, Batra SK: Current status of molecular markers for early detection of sporadic pancreatic cancer. Biochim Biophys Acta. 2011, 1815: 44-64.
Singh M, Johnson L: Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res. 2006, 12: 5312-5328. 10.1158/1078-0432.CCR-06-0437.
Desseyn JL, Clavereau I, Laine A: Cloning, chromosomal localization and characterization of the murine mucin gene” orthologous to human MUC4. Eur J Biochem. 2002, 269: 3150-3159. 10.1046/j.1432-1033.2002.02988.x.
Jonckheere N, Van Der Sluis M, Velghe A, Buisine MP, Sutmuller M, Ducourouble MP: Transcriptional activation of the murine Muc5ac mucin gene in epithelial cancer cells by TGF-beta/Smad4 signalling pathway is potentiated by Sp1. Biochem J. 2004, 377: 797-808.
Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003, 4: 437-450. 10.1016/S1535-6108(03)00309-X.
Acres B, Limacher JM: MUC1 as a target antigen for cancer immunotherapy. Expert Rev Vaccines. 2005, 4: 493-502. 10.1586/14760584.4.4.493.
Siveke JT, Einwachter H, Sipos B, Lubeseder-Martellato C, Kloppel G, Schmid RM: Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell. 2007, 12: 266-279. 10.1016/j.ccr.2007.08.002.
Besmer DM, Curry JM, Roy LD, Tinder TL, Sahraei M, Schettini J: Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis. Cancer Res. 2011, 71: 4432-4442. 10.1158/0008-5472.CAN-10-4439.
Yonezawa S, Higashi M, Yamada N, Yokoyama S, Kitamoto S, Kitajima S: Mucins in human neoplasms: Clinical pathology, gene expression and diagnostic application. Pathol Int. 2011, 61: 697-716. 10.1111/j.1440-1827.2011.02734.x.
Swartz MJ, Batra SK, Varshney GC, Hollingsworth MA, Yeo CJ, Cameron JL: MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. Am J Clin Pathol. 2002, 117: 791-796. 10.1309/7Y7N-M1WM-R0YK-M2VA.
Yamazoe S, Tanaka H, Sawada T, Amano R, Yamada N, Ohira M: RNA interference suppression of mucin 5AC (MUC5AC) reduces the adhesive and invasive capacity of human pancreatic cancer cells. J Exp Clin Cancer Res. 2010, 29: 53-53. 10.1186/1756-9966-29-53.
Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z: Kras(G12D)-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell. 2012, 21: 105-120. 10.1016/j.ccr.2011.12.006.
Kuwahara I, Lillehoj EP, Hisatsune A, Lu W, Isohama Y, Miyata T: Neutrophil elastase stimulates MUC1 gene expression through increased Sp1 binding to the MUC1 promoter. Am J Physiol Lung Cell Mol Physiol. 2005, 289: L355-L362. 10.1152/ajplung.00040.2005.
Rhim AD, Stanger BZ: Molecular biology of pancreatic ductal adenocarcinoma progression: aberrant activation of developmental pathways. Prog Mol Biol Transl Sci. 2010, 97: 41-78.