Optimization of Cardiac Fiber Orientation for Homogeneous Fiber Strain During Ejection
Tóm tắt
The strain of muscle fibers in the heart is likely to be distributed uniformly over the cardiac walls during the ejection period of the cardiac cycle. Mathematical models of left ventricular (LV) wall mechanics have shown that the distribution of fiber strain during ejection is sensitive to the orientation of muscle fibers in the wall. In the present study, we tested the hypothesis that fiber orientation in the LV wall is such that fiber strain during ejection is as homogeneous as possible. A finite-element model of LV wall mechanics was set up to compute the distribution of fiber strain at the beginning (BE) and end (EE) of the ejection period of the cardiac cycle, with respect to a middiastolic reference state. The distribution of fiber orientation over the LV wall, quantified by three parameters, was systematically varied to minimize regional differences in fiber shortening during ejection and in the average of fiber strain at BE and EE. A well-defined optimum in the distribution of fiber orientation was found which was not significantly different from anatomical measurements. After optimization, the average of fiber strain at BE and EE was 0.025 ± 0.011 (mean ± standard deviation) and the difference in fiber strain during ejection was 0.214 ± 0.018. The results indicate that the LV structure is designed for maximum homogeneity of fiber strain during ejection. © 1999 Biomedical Engineering Society.
PAC99: 8719Hh, 8710+e, 8719Ff, 8719Rr, 0270Dh
Tài liệu tham khảo
Arts, T., F. W. Prinzen, L. H. E. H. Snoeckx, J. M. Rijcken, and R. S. Reneman. Adaptation of cardiac structure by mechanical feedback in the environment of the cell: A model study. Biophys. J. 66:953–961, 1994.
Arts, T., and R. S. Reneman. Dynamics of left ventricular wall and mitral valve mechanics—A model study. J. Biomech. 22:261–271, 1989.
Azhari, H., J. L. Weiss, W. J. Rogers, C. O. Siu, E. A. Zerhouni, and E. P. Shapiro. Noninvasive quantification of principal strains in normal canine hearts using tagged MRI images in 3-D. Am. J. Physiol. 264:H205-H216, 1993.
Barthelemy, J.-F. M., and R. T. Haftka. Approximation concepts for optimum structural design—A review. Struct. Optim. 5:129–144, 1993.
Beyar, R., and S. Sideman. Left ventricular mechanics related to the local distribution of oxygen demand throughout the wall. Circ. Res. 58:664–677, 1986.
Bovendeerd, P. H. M., T. Arts, J. M. Huyghe, D. H. van Campen, and R. S. Reneman. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A model study. J. Biomech. 25:1129–1140, 1992.
Bussemaker, J., J. H. G. M. van Beek, A. B. J. Groeneveld, M. Hennekes, T. Teerlink, L. G. Thijs, and N. Westerhof. Local mitochondrial enzyme activity correlates with myocardial blood flow at basal workloads. J. Mol. Cell. Cardiol. 26:1017–1028, 1994.
Carew, T. E., and J. W. Covell. Fiber orientation in the hypertrophied canine left ventricle. Am. J. Physiol. 236:H487-H493, 1979.
Cooper IV, G. Cardiocyte adaptation to chronically altered load. Annu. Rev. Physiol. 49:501–518, 1987.
Cooper IV, G., R. L. Kent, C. E. Uboh, E. W. Thompson, and T. A. Marino. Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J. Clin. Invest. 75:1403–1414, 1985.
Cooper IV, G., W. E. Mercer, J. K. Hoober, P. R. Gordon, R. L. Kent, I. K. Lauva, and T. A. Marino. Load regulation of the properties of adult feline cardiocytes: The role of substrate adhesion. Circ. Res. 58:692–706, 1986.
Delhaas, T., T. Arts, P. H. M. Bovendeerd, F. W. Prinzen, and R. S. Reneman. Subepicardial fiber strain and stress as related to left ventricular pressure and volume. Am. J. Physiol. 264:H1548-H1559, 1993.
Delhaas, T., T. Arts, F. W. Prinzen, and R. S. Reneman. Regional fiber stress-fiber strain area as estimate of regional oxygen demand in the canine heart. J. Physiol. (London) 477:481–496, 1994.
Franzen, D., R. S. Conway, H. Zhang, E. H. Sonnenblick, and C. Eng. Spatial heterogeneity of local blood flow and metabolite content in dog hearts. Am. J. Physiol. 254:H344-H353, 1988.
Grimm, A. H., H.-L. Lin, and B. R. Grimm. Left ventricular free wall and intraventricular pressure-sarcomere length distributions. Am. J. Physiol. 239:H101-H107, 1980.
Guccione, J. M., K. D. Costa, and A. D. McCulloch. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 28:1167–1177, 1995.
Guccione, J. M., W. G. O'Dell, A. D. McCulloch, and W. C. Hunter. Anterior and posterior left ventricular sarcomere lengths behave similarly during ejection. Am. J. Physiol. 272:H469-H477, 1997.
Huisman, R. F., G. Elzinga, N. Westerhof, and P. Sipkema. Measurement of ventricular wall stress. Cardiovasc. Res. 14:142–153, 1980.
Huyghe, J. M., T. Arts, D. H. van Campen, and R. S. Reneman. Porous medium finite element model of the beating left ventricle. Am. J. Physiol. 262:H1256-H1267, 1992.
King, R. B., J. B. Bassingthwaighte, J. R. S. Hales, and L. B. Rowell. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ. Res. 57:285–295, 1985.
LeGrice, I. J., P. J. Hunter, and B. H. Smaill. Laminar structure of the heart: A mathematical model. Am. J. Physiol. 272:H2466-H2476, 1997.
LeGrice, I. J., B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269:H571-H582, 1995.
Malvern L. E. Introduction to the Mechanics of a Continuous Medium. London: Prentice-Hall, 1969.
McCulloch, A. D., B. H. Smaill, and P. J. Hunter. Regional left ventricular epicardial deformation in the passive dog heart. Circ. Res. 64:721–733, 1989.
Mullender, M. G., R. Huiskes, and H. Weinans. A physiological approach to the simulation of bone remodeling as a self-organizational control process. J. Biomech. 27:1389–1394, 1994.
Nielsen, P. M. F., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260:H1365-H1378, 1991.
Peskin, C. S. Fiber architecture of the left ventricular wall: An asymptotic analysis. Commun. Pure Appl. Math. 42:79–113, 1989.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes. The Art of Scientific Computing. Cambridge: Cambridge University Press, 1986.
Prinzen, F. W., C. H. Augustijn, T. Arts, M. A. Allessie, and R. S. Reneman. Redistribution of myocardial fiber strain and blood flow by asynchronous electrical activation. Am. J. Physiol. 259:H300-H308, 1990.
Prinzen, T. T., T. Arts, F. W. Prinzen, and R. S. Reneman. Mapping of epicardial deformation using a video processing technique. J. Biomech. 19:263–273, 1986.
Rademakers, F. E., W. J. Rogers, W. H. Guier, G. M. Hutchins, C. O. Siu, M. L. Weisfeldt, J. L. Weiss, and E. P. Shapiro. Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 89:1174–1182, 1994.
Rijcken, J., P. H. M. Bovendeerd, A. J. G. Schoofs, D. H. van Campen, and T. Arts. Optimization of cardiac fiber orientation for homogeneous fiber strain at beginning of ejection. J. Biomech. 30:1041–1049, 1997.
Rodriguez, E. K., W. C. Hunter, M. J. Royce, M. K. Leppo, A. S. Douglas, and H. F. Weisman. A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts. Am. J. Physiol. 263:H293-H306, 1992.
Rodriguez, E. K., J. H. Omens, L. K. Waldman, and A. D. McCulloch. Effect of residual stress on transmural sarcomere length distributions in rat left ventricle. Am. J. Physiol. 264:H1048-H1056, 1993.
Sloof, G. W., F. C. Visser, E. F. I. Comans, A. B. J. Groeneveld, J. J. Bax, M. J. van Eenige, G. J. van der Vusse, and F. F. J. Knapp. Heterogeneity of DMIPP uptake and its relationship with heterogeneous myocardial blood flow. J. Nucl. Med. 38:1424–1430, 1997.
Spotnitz, H. M., E. H. Sonnenblick, and D. Spiro. Relation of ultrastructure to function in the intact heart: Sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ. Res. 18:49–66, 1966.
Streeter, Jr., D. D. Gross morphology and fiber geometry of the heart. In: Handbook of Physiology—The Cardiovascular System I, edited by R. M. Berne. Bethesda, MD: Am. Physiol. Soc., 1979, pp. 61–112.
Streeter, Jr., D. D., H. M. Spotnitz, D. P. Patel, J. Ross, Jr., and E. H. Sonnenblick. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24:339–347, 1969.
Streeter, D. D. J., and W. T. Hanna. Engineering mechanics for successive states in canine left ventricular myocardium. 1. Cavity and wall geometry. Circ. Res. 33:639–655, 1973.
ter Keurs, H. E. D., W. H. Rijnsburger, R. van Heuningen, and M. J. Nagelsmit. Tension development and sarcomere length in rat cardiac trabeculae: Evidence of length-dependent activation. Circ. Res. 46:703–714, 1980.
Villarreal, F. J., and W. Y. W. Lew. Finite strains in anterior and posterior wall of canine left ventricle. Am. J. Physiol. 259:H1409-H1418, 1990.
Waldman, L. K., D. Nosan, F. Villarreal, and J. W. Covell. Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res. 63:550–562, 1988.
Watson, P. A. Function follows form: Generation of intracellular signals by cell deformation. FASEB J. 5:2013–2019, 1991.
Yin, F. C. P., R. K. Strumpf, P. H. Chew, and S. L. Zeger. Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20:577–589, 1987.