A new method for non‐parametric multivariate analysis of variance

Austral Ecology - Tập 26 Số 1 - Trang 32-46 - 2001
Marti J. Anderson

Tóm tắt

AbstractHypothesis‐testing methods for multivariate data are needed to make rigorous probability statements about the effects of factors and their interactions in experiments. Analysis of variance is particularly powerful for the analysis of univariate data. The traditional multivariate analogues, however, are too stringent in their assumptions for most ecological multivariate data sets. Non‐parametric methods, based on permutation tests, are preferable. This paper describes a new non‐parametric method for multivariate analysis of variance, after McArdle and Anderson (in press). It is given here, with several applications in ecology, to provide an alternative and perhaps more intuitive formulation for ANOVA (based on sums of squared distances) to complement the description provided by McArdle and Anderson (in press) for the analysis of any linear model. It is an improvement on previous non‐parametric methods because it allows a direct additive partitioning of variation for complex models. It does this while maintaining the flexibility and lack of formal assumptions of other non‐parametric methods. The test‐statistic is a multivariate analogue to Fisher’s F‐ratio and is calculated directly from any symmetric distance or dissimilarity matrix. P‐values are then obtained using permutations. Some examples of the method are given for tests involving several factors, including factorial and hierarchical (nested) designs and tests of interactions.

Từ khóa


Tài liệu tham khảo

10.1007/s004420050706

AndersonM. J.&ClementsA.(in press) Resolving environmental disputes: a statistical method for choosing among competing cluster models.Ecol. Applic.

10.1080/00949659908811936

10.1016/0022-0981(94)90006-X

10.1007/s004420050104

10.1017/S0305004100020880

10.2307/3546293

10.2307/3236031

BiondiniM. E. MielkeP. W. RedenteE. F.(1991) Permutation techniques based on Euclidean analysis spaces: a new and powerful statistical method for ecological research. In:Computer Assisted Vegetation Analysis(eds E. Feoli & L. Orlóci) pp. 221–40. Kluwer Academic Publishers Dordrecht.

10.1111/j.2044-8317.1987.tb00865.x

10.2307/1942268

10.1080/03610917408548446

10.1016/0022-0981(95)00017-l

ClarkeK. R.(1988) Detecting change in benthic community structure. In:Proceedings XIVth International Biometric Conference Namur: Invited Papers pp. 131–42. Société Adolphe Quetelet Gembloux.

10.1111/j.1442-9993.1993.tb00438.x

10.3354/meps046213

10.1146/annurev.es.23.110192.002201

10.2307/1943075

EdgingtonE. S.(1995)Randomization Tests 3rd edn. Marcel Dekker New York.

10.1093/genetics/131.2.479

FaithD. P.(1990) Multivariate methods for biological monitoring based on community structure. In:The Australian Society of Limnology 29th Congress p. 17 (Abstract). Alligator Rivers Region Research Institute.

10.1111/j.1442-9993.1995.tb00530.x

10.1007/BF00038687

FisherR. A.(1935)Design of Experiments.Oliver & Boyd Edinburgh.

10.1111/j.1469-1809.1936.tb02137.x

Fisher R. A., 1955, Statistical methods and scientific induction., J. Roy. Stat. Soc., 17, 69

10.2307/1391660

10.1098/rstb.1994.0114

10.1111/j.1442-9993.1997.tb00696.x

10.3354/meps190113

10.1002/(sici)1099-095x(199801/02)9:1<53::aid-env285>3.3.co;2-r

10.1080/00949658208810568

10.1016/0167-9473(94)90085-X

10.1093/biomet/53.3-4.325

10.3354/meps066285

GreenR. H.(1979)Sampling Design and Statistical Methods for Environmental Biologists. Wiley New York.

10.1111/j.1442-9993.1993.tb00436.x

10.1007/BF00117360

10.1037//1082-989x.1.2.184

Hope A. C. A., 1968, A simplified Monte Carlo significance test procedure., J. Roy. Stat. Soc., 30, 582

10.1214/aoms/1177732979

10.1111/j.2044-8317.1976.tb00714.x

10.2307/1942661

Johnson C. R., 1993, Using fixed‐effects model multivariate analysis of variance in marine biology and ecology., Oceanogr. Mar. Biol. Ann. Rev., 31, 177

10.1016/s0022-0981(98)00036-7

KendallM. G.&StuartA.(1963)The Advanced Theory of Statistics Vol. 1 2nd edn. Charles Griffith London.

KruskalJ. B.&WishM.(1978)Multidimensional Scaling.Sage Publications Beverly Hills.

10.1007/BF00146952

Kulczynski S., 1928, Die Pflanzenassoziationen der Pieninen., Bull. Int. Acad. Pol. Sci. Lett. Cl. Sci. Math. Nat. Ser., 1927, 57

LamontB. B.&GrantK. J.(1979) A comparison of twenty‐one measures of site dissimilarity. In:Multivariate Methods in Ecological Work(eds L. Orloci C. R. Rao & W. M. Stiteler) pp. 101–26. International Co‐operative Publishing House Fairland.

10.1093/biomet/30.1-2.180

10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2

LegendreP.&LegendreL.(1998)Numerical Ecology 2nd English edn. Elsevier Science Amsterdam.

McArdleB. H.&AndersonM. J.(in press) Fitting multivariate models to community data: a comment on distance‐based redundancy analysis.

ManlyB. F. J.(1997)Randomization Bootstrap and Monte Carlo Methods in Biology 2nd edn. Chapman & Hall London.

10.1038/hdy.1992.111

10.2307/2529108

10.1093/biomet/58.1.105

MardiaK. V. KentJ. T. BibbyJ. M.(1979)Multivariate Analysis. Academic Press London.

MielkeP. W. BerryK. J. JohnsonE. S.(1976) Multi‐response permutation procedures for a priori classifications.Commun. Stat. Theory Methods5(14) 1409–24.

10.2307/1931577

10.2307/2269394

10.1080/01621459.1974.10480224

10.1214/aoms/1177728599

10.2307/3236308

10.1111/j.1442-9993.1996.tb00611.x

SeberG. A. F.(1984)Multivariate Observations. John Wiley and Sons New York.

10.1017/S0025315400031404

10.1016/0043-1354(90)90236-Y

10.2307/2331554

ter BraakC. J. F.(1992) Permutation versus bootstrap significance tests in multiple regression andANOVA. In:Bootstrapping and Related Techniques(eds K. H. Jöckel G. Rothe & W. Sendler) pp. 79–86. Springer‐Verlag Berlin.

Underwood A. J., 1981, Techniques of analysis of variance in experimental marine biology and ecology., Oceanogr. Mar. Biol. Ann. Rev., 19, 513

10.1111/j.1442-9993.1993.tb00437.x

UnderwoodA. J.(1997)Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance.Cambridge University Press Cambridge.

10.1007/s004420050694

10.3354/meps046181

10.1016/0022-0981(93)90098-9

10.1093/biomet/24.3-4.471

WinerB. J. BroanD. R. MichelsK. M.(1991)Statistical Principles in Experimental Design 3rd edn. McGraw‐Hill Sydney.