Preparation of pH-sensitive chitosan/polyvinylpyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions
Tài liệu tham khảo
Siegel, 2019, Cancer statistics, 2019, CA Cancer J. Clin., 69, 7, 10.3322/caac.21551
Beik, 2016, Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications, J. Control. Release, 235, 205, 10.1016/j.jconrel.2016.05.062
Hu, 2010, Nanoparticle-assisted combination therapies for effective cancer treatment, Ther. Deliv., 1, 323, 10.4155/tde.10.13
N. A. Ochekpe, P. O. Olorunfemi, and N. C. Ngwuluka, “Nanotechnology and drug delivery part 2: nanostructures for drug delivery,” Trop. J. Pharm. Res., vol. 8, no. 3, 2009.
Sun, 2019, pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil, Int. J. Biol. Macromol., 128, 468, 10.1016/j.ijbiomac.2019.01.140
Bardajee, 2018, pH-responsive fluorescent dye-labeled metal-chelating polymer with embedded cadmium telluride quantum dots for controlled drug release of doxorubicin, React. Funct. Polym., 133, 45, 10.1016/j.reactfunctpolym.2018.09.008
Chacko, 2012, Polymer nanogels: a versatile nanoscopic drug delivery platform, Adv. Drug Deliv. Rev., 64, 836, 10.1016/j.addr.2012.02.002
Malmir, 2020, Antibacterial properties of a bacterial cellulose CQD-TiO2 nanocomposite, Carbohydr. Polym., 234, 115835, 10.1016/j.carbpol.2020.115835
Teymourinia, 2019, Application of green synthesized TiO2/Sb2S3/GQDs nanocomposite as high efficient antibacterial agent against E. coli and Staphylococcus aureus, Mater. Sci. Eng. C, 99, 296, 10.1016/j.msec.2019.01.094
Noorani, 2018, Fabrication and evaluation of nanofibrous polyhydroxybutyrate valerate scaffolds containing hydroxyapatite particles for bone tissue engineering, Int. J. Polym. Mater. Polym. Biomater., 0, 1
Wang, 2017, pH-controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier, Int. J. Biol. Macromol., 103, 248, 10.1016/j.ijbiomac.2017.05.064
Zia, 2017, A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites, Int. J. Biol. Macromol., 96, 282, 10.1016/j.ijbiomac.2016.11.095
Khezri, 2018, Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: emphasis on biofilm reduction, Int. J. Biol. Macromol., 114, 972, 10.1016/j.ijbiomac.2018.03.100
Marsano, 2005, Stimuli responsive gels based on interpenetrating network of chitosan and poly (vinylpyrrolidone), Polymer (Guildf)., 46, 1595, 10.1016/j.polymer.2004.12.017
Liang, 2019, pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery, J. Colloid Interface Sci., 536, 224, 10.1016/j.jcis.2018.10.056
Hasan, 2017, Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application, J. Biomed. Mater. Res. Part A, 105, 2391, 10.1002/jbm.a.36097
O’Haire, 2016, Centrifugal melt spinning of polyvinylpyrrolidone (PVP)/triacontene copolymer fibres, J. Mater. Sci., 51, 7512, 10.1007/s10853-016-0030-5
Garakani, 2020, Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications, Int. J. Biol. Macromol., 164, 356, 10.1016/j.ijbiomac.2020.07.138
Rasekh, 2014, Electrospun PVP–indomethacin constituents for transdermal dressings and drug delivery devices, Int. J. Pharm., 473, 95, 10.1016/j.ijpharm.2014.06.059
Wang, 2017, Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems, Chem. Eng. J., 307, 661, 10.1016/j.cej.2016.08.135
Abdelrazek, 2013, Physical characterization of poly (vinyl pyrrolidone) and gelatin blend films doped with magnesium chloride, Plast. Polym. Technol., 2, 1
Jiang, 2012, Electrospun drug-loaded core–sheath PVP/zein nanofibers for biphasic drug release, Int. J. Pharm., 438, 232, 10.1016/j.ijpharm.2012.08.053
Singh, 2011, Radiation crosslinking polymerization of sterculia polysaccharide–PVA–PVP for making hydrogel wound dressings, Int. J. Biol. Macromol., 48, 501, 10.1016/j.ijbiomac.2011.01.013
Krezović, 2017, Structural, thermal, mechanical, swelling, drug release, antibacterial and cytotoxic properties of P (HEA/IA)/PVP semi-IPN hydrogels, Chem. Eng. Res. Des., 121, 368, 10.1016/j.cherd.2017.03.030
Risbud, 2000, pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery, J. Control. Release, 68, 23, 10.1016/S0168-3659(00)00208-X
Zhao, 2018, Iron oxide nanoparticles-based vaccine delivery for cancer treatment, Mol. Pharm., 15, 1791, 10.1021/acs.molpharmaceut.7b01103
K. Kansara et al., “Synthesis of biocompatible iron oxide nanoparticles as a drug delivery vehicle,” Int. J. Nanomedicine, vol. 13, no. T-NANO 2014 Abstracts, p. 79, 2018.
Wang, 2018, Hierarchical hematite/TiO2 nanorod arrays coupled with responsive mesoporous silica nanomaterial for highly sensitive photoelectrochemical sensing, Biosens. Bioelectron., 117, 515, 10.1016/j.bios.2018.06.030
Jiang, 2014, Synthesis and magnetic characterizations of uniform iron oxide nanoparticles, Phys. B Condens. Matter, 443, 1, 10.1016/j.physb.2014.03.009
M. Fathy, A. I. Omran, and W. A. Badway, “Antireflective Coating Nanocrystalline α-Fe2O3 Layer for Solar Cell Applications.”
Cacicedo, 2016, Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells, Colloids Surfaces B Biointerfaces, 140, 421, 10.1016/j.colsurfb.2016.01.007
C.-H. Chen et al., “Thermosensitive injectable hydrogel for simultaneous intraperitoneal delivery of doxorubicin and prevention of peritoneal adhesion,” Int. J. Mol. Sci., vol. 19, no. 5, p. 1373, 2018.
Fathi, 2019, Dual thermo-and pH-sensitive injectable hydrogels of chitosan/(poly (N-isopropylacrylamide-co-itaconic acid)) for doxorubicin delivery in breast cancer, Int. J. Biol. Macromol., 128, 957, 10.1016/j.ijbiomac.2019.01.122
Jahanizadeh, 2017, Curcumin-loaded chitosan/carboxymethyl starch/montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation, Int. J. Biol. Macromol., 105, 757, 10.1016/j.ijbiomac.2017.07.101
Soares, 2016, Towards the development of multifunctional chitosan-based iron oxide nanoparticles: optimization and modelling of doxorubicin release, Carbohydr. Polym., 153, 212, 10.1016/j.carbpol.2016.07.109
Higuchi, 1961, Rate of release of medicaments from ointment bases containing drugs in suspension, J. Pharm. Sci., 50, 874, 10.1002/jps.2600501018
Korsmeyer, 1983, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm., 15, 25, 10.1016/0378-5173(83)90064-9
Bruschi, 2015
Jarosz, 2016, Nanoporous anodic titanium dioxide layers as potential drug delivery systems: drug release kinetics and mechanism, Colloids Surfaces B Biointerfaces, 143, 447, 10.1016/j.colsurfb.2016.03.073
Dash, 2010, Kinetic modeling on drug release from controlled drug delivery systems, Acta Pol. Pharm., 67, 217
Prabha, 2016, Preparation and characterization of chitosan—polyethylene glycol-polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study, J. Biomed. Mater. Res. Part B Appl. Biomater., 104, 808, 10.1002/jbm.b.33637
Zhang, 2009, Pervaporation dehydration of ethyl acetate/ethanol/water azeotrope using chitosan/poly (vinyl pyrrolidone) blend membranes, J. Memb. Sci., 327, 274, 10.1016/j.memsci.2008.11.034
Zhao, 2013, Self-assembly properties, aggregation behavior and prospective application for sustained drug delivery of a drug-participating catanionic system, Int. J. Pharm., 452, 108, 10.1016/j.ijpharm.2013.04.072
Sun, 2019, Preparation of pH-sensitive Fe3O4@C/carboxymethyl cellulose/chitosan composite beads for diclofenac sodium delivery, Int. J. Biol. Macromol., 127, 594, 10.1016/j.ijbiomac.2019.01.191
Cabanas-Polo, 2015, Electrophoretic deposition of α-Fe2O3/chitosan nanocomposite coatings for functional and biomedical applications, J. Nanosci. Nanotechnol., 15, 10149, 10.1166/jnn.2015.11685
Atangana, 2019, Modification of novel chitosan-starch cross-linked derivatives polymers: synthesis and characterization, J. Polym. Environ., 27, 979, 10.1007/s10924-019-01407-0
Poonguzhali, 2017, Synthesis and characterization of chitosan/poly (vinylpyrrolidone) biocomposite for biomedical application, Polym. Bull., 74, 2185, 10.1007/s00289-016-1831-z
Khoo, 2003, Oral gingival delivery systems from chitosan blends with hydrophilic polymers, Eur. J. Pharm. Biopharm., 55, 47, 10.1016/S0939-6411(02)00155-8
Karimzadeh, 2018, Electrochemical preparation and characterization of chitosan-coated superparamagnetic iron oxide (Fe3O4) nanoparticles, Mater. Res. Innov., 22, 352
Karpuraranjith, 2017, Chitosan/zinc oxide-polyvinylpyrrolidone (CS/ZnO-PVP) nanocomposite for better thermal and antibacterial activity, Int. J. Biol. Macromol., 104, 1753, 10.1016/j.ijbiomac.2017.02.079
Costa-Júnior, 2009, Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications, Carbohydr. Polym., 76, 472, 10.1016/j.carbpol.2008.11.015
Jeddi, 2019, Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery, Int. J. Biol. Macromol., 135, 829, 10.1016/j.ijbiomac.2019.05.210
Naderi, 2020, Synthesis and characterization of carboxymethyl cellulose/β-cyclodextrin/chitosan hydrogels and investigating the effect of magnetic nanoparticles (Fe3O4) on a novel carrier for a controlled release of methotrexate as drug delivery, J. Inorg. Organomet. Polym. Mater., 30, 1339, 10.1007/s10904-019-01301-1
Risbud, 2000, Chitosan–polyvinyl pyrrolidone hydrogels as candidate for islet immunoisolation: in vitro biocompatibility evaluation, Cell Transplant., 9, 25, 10.1177/096368970000900104
Yan, 2011, In vitro cytotoxicity of monodispersed hematite nanoparticles on Hek 293 cells, Mater. Lett., 65, 815, 10.1016/j.matlet.2010.12.004
T. M. P. Le, T. M. L. Dang, T. H. La, T. H. Le, and Q. H. Le, “Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 4, no. 2, p. 25001, 2013.
Javid, 2013, Chitosan-coated superparamagnetic iron oxide nanoparticles for doxorubicin delivery: synthesis and anticancer effect against human ovarian cancer cells, Chem. Biol. Drug Des., 82, 296, 10.1111/cbdd.12145
J. Zhou et al., “Multifunctional Fe2O3@PPy-PEG nanocomposite for combination cancer therapy with MR imaging,” Nanotechnology, vol. 26, no. 42, p. 425101, 2015.
Zhao, 2006, Synthesis of pH-sensitive PVP/CM-chitosan hydrogels with improved surface property by irradiation, Carbohydr. Polym., 64, 473, 10.1016/j.carbpol.2005.12.014
Archana, 2013, In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material, Carbohydr. Polym., 95, 530, 10.1016/j.carbpol.2013.03.034
Ma, 2020, Self-assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery, Drug Deliv., 27, 200, 10.1080/10717544.2020.1716878
Wang, 2020, Nanocomplexes based polyvinylpyrrolidone K-17PF for ocular drug delivery of naringenin, Int. J. Pharm., 578, 119133, 10.1016/j.ijpharm.2020.119133
L.-F. Chen, P.-Y. Xu, C.-P. Fu, R. K. Kankala, A.-Z. Chen, and S.-B. Wang, “Fabrication of supercritical antisolvent (SAS) process-assisted fisetin-encapsulated poly (vinyl pyrrolidone)(PVP) nanocomposites for improved anticancer therapy,” Nanomaterials, vol. 10, no. 2, p. 322, 2020.
Zavareh, 2020