Down-shifting and down-conversion emission properties of novel CdO–P2O5 invert glasses activated with Pr3+ and Pr3+/Yb3+ for photonic applications
Tài liệu tham khảo
Sun, 2018, Luminescence properties of Pr3+ doped (Y0.9La0.1)2O3 transparent ceramics for potential applications in white LEDs and scintillators, J. Lumin., 194, 452, 10.1016/j.jlumin.2017.10.077
Tian, 2019, Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3: Pr3+ red emitting phosphor, J. Alloys Compd., 784, 628, 10.1016/j.jallcom.2019.01.087
Zhang, 2013, Visible and near infrared photoluminescence of Pr3+ doped oxy-chalcohalide glasses, Chem. Phys. Lett., 568–569, 80, 10.1016/j.cplett.2013.03.018
Belançon, 2004, Near-IR emission in Pr3+single doped and tunable near-IR emission in Pr3+/Yb3+ codoped tellurite tungstate glasses for broadband optical amplifiers, Opt. Mater., 36, 1020, 10.1016/j.optmat.2014.01.014
Katayama, 2010, Near infrared downconversion in Pr3+–Yb3+ codoped oxyfluoride glass ceramics, Opt. Mater., 33, 176, 10.1016/j.optmat.2010.07.016
Katayama, 2013, Mechanism of quantum cutting in Pr3+–Yb3+ codoped oxyfluoride glass ceramics, J. Lumin., 134, 825, 10.1016/j.jlumin.2012.06.042
Jana, 2020, Pr3+ doped BaNb2O6 reddish orange emitting phosphor for solid state lighting and optical thermometry applications, J. Alloys Compd., 821, 153342, 10.1016/j.jallcom.2019.153342
Zhou, 2019, Investigation of energy transfer in Pr3+, Yb3+ co-doped phosphate phosphor: The role of 3P0 and 1D2, J. Lumin., 209, 45, 10.1016/j.jlumin.2019.01.010
Zhang, 2018, Efficient deep ultraviolet to near infrared quantum cutting in Pr3+/Yb3+ codoped CaGdAlO4 phosphors, J. Alloys Compd., 740, 595, 10.1016/j.jallcom.2018.01.001
Zhang, 2015, Tunable luminescent Properties and concentration-dependent, site-preferable Distribution of Eu2+ Ions in silicate Glass for white LEDs applications, Appl. Mater. Interfaces, 7, 10044, 10.1021/acsami.5b02550
Chen, 2015, Advances in transparent glass–ceramic phosphors for white light-emitting diodes-A review, J. Eur. Ceram. Soc., 35, 859, 10.1016/j.jeurceramsoc.2014.10.002
Lachhe, 2018, Judd–Ofelt analysis and experimental spectroscopic study of erbium doped phosphate glasses, J. Lumin., 201, 245, 10.1016/j.jlumin.2018.03.087
Hraiech, 2018, Thermal and optical properties of Er3+ doped phosphate glasses, J. Non-Cryst. Solids, 482, 73, 10.1016/j.jnoncrysol.2017.12.018
Matori, 2017, Comprehensive study on physical, elastic and shielding properties of lead zinc phosphate glasses, J. Non-Cryst. Solids, 457, 97, 10.1016/j.jnoncrysol.2016.11.029
Rani, 2009, Influence of Bi2O3 on optical properties and structure of bismuth lithium phosphate glasses, J. Alloys Compd., 477, 504, 10.1016/j.jallcom.2008.10.048
Azooz, 2019, Preparation and characterization of invert glasses with high CdO content, J. Non-Cryst. Solids, 515, 82, 10.1016/j.jnoncrysol.2019.04.019
Abdelghany, 2018, Characterization of invert soda lime silica glasses containing high titania content together with their glass ceramics, Siliconindia, 10, 1035, 10.1007/s12633-017-9566-5
Cervantes-Juárez, 2019, Up and down-shifting emission properties of novel Er3+-doped CdO-V2O5-P2O5 glass system, Ceram. Int., 45, 1609, 10.1016/j.ceramint.2018.10.036
Soriano-Romero, 2019, Spectroscopic evaluation a new and novel Nd3+/Yb3+ co-doped CdO-V2O5 glass system for 1 μm laser application, J. Alloys Compd., 777, 886, 10.1016/j.jallcom.2018.10.370
Hirata, 2005, Development of luminescent materials with strong UV–blue absorption, Opt. Mater., 27, 1301, 10.1016/j.optmat.2004.11.028
Hirata, 2008, Development of nanostructured EuAl2O4 Phosphors with strong long-UV excitation, J. Nanosci. Nanotechnol., 8, 6461, 10.1166/jnn.2008.18407
Kumar, 2013, EPR, optical and physical properties of chromium ions in CdO-SrO-B2O3-SiO2 (CdSBSi) glasses, Opt. Mater., 35, 1320, 10.1016/j.optmat.2013.01.012
Han, 2004, Pr3+-doped phosphate glasses for fiber amplifiers operating at 1.38–1.53 nm of the fifth optical telecommunication window, Opt. Mater., 36, 1203, 10.1016/j.optmat.2014.02.032
Herrera, 2016, Multichannel emission from Pr3+ doped heavy metal oxide glass B2O3-PbO-GeO2-Bi2O3 for broadband signal amplification, J. Lumin., 180, 341, 10.1016/j.jlumin.2016.08.019
Jamalaiah, 2009, Optical absorption, fluorescence and decay properties of Pr3+-doped PbO–H3BO3–TiO2–AlF3 glasses, J. Lumin., 129, 1023, 10.1016/j.jlumin.2009.04.018
Venkateswarlu, 2014, Pr3+ doped lead tungsten tellurite glasses for visible red lasers, Ceram. Int., 40, 6261, 10.1016/j.ceramint.2013.11.084
Huerta, 2020, Yellow and reddish-orange light generation in lithium-aluminum-zinc phosphate glasses co-doped with Dy3+/Tb3+ and tri-doped with Dy3+/Tb3+/Eu3+, J. Lumin., 219, 116882, 10.1016/j.jlumin.2019.116882
McCamy, 1992, Correlated color temperature as an explicit function of chromaticity coordinates, Color Res. Appl., 17, 142, 10.1002/col.5080170211
Deopa, 2017, Spectroscopic studies of Pr3+ doped lithium lead alumino borate glasses for visible reddish orange luminescent device applications, J. Alloys Compd., 708, 911, 10.1016/j.jallcom.2017.03.020
Morassuti, 2019, Spectroscopic investigation and interest of Pr3+-doped calcium aluminosilicate glass, J. Lumin., 210, 376, 10.1016/j.jlumin.2019.02.051
Inokuti, 1965, Influence of energy transfer by the exchange mechanism on donor luminescence, J. Chem. Phys., 43, 1978, 10.1063/1.1697063
Meza-Rocha, 2016, White light generation through Zn(PO3)2 glass activated with Eu3+ and Dy3+, J. Lumin., 176, 235, 10.1016/j.jlumin.2016.03.035
Caldiño G, 2003, Energy transfer in CaF2 doped with Ce3+, Eu2+ and Mn2+ ions, J. Phys. Condens. Matter, 15, 7127, 10.1088/0953-8984/15/41/020
Rajesh, 2016, Quantum cutting and up-conversion investigations in Pr3+/Yb3+ co-doped oxyfluoro-tellurite glasses, J. Non-Cryst. Solids, 450, 149, 10.1016/j.jnoncrysol.2016.08.009
Dexter, 1954, Theory of concentration quenching in inorganic phosphors, J. Chem. Phys., 22, 1063, 10.1063/1.1740265
Velázquez, 2018, Transparent oxyfluoride glass-ceramics with NaGdF4 nanocrystals doped with Pr3+ and Pr3+-Yb3+, J. Lumin., 193, 61, 10.1016/j.jlumin.2017.07.034