Maximal extension of conformally flat globally hyperbolic space–times

Geometriae Dedicata - Tập 174 - Trang 235-260 - 2014
Clara Rossi Salvemini1
1Département de Mathématiques, Université Paris-Sud, Orsay Cedex, France

Tóm tắt

The notion of maximal extension of a globally hyperbolic space–time arises from the notion of maximal solutions of the Cauchy problem associated to the Einstein’s equations of general relativity. Choquet-Bruhat and Geroch proved (Commun Math Phys 14:329–335, 1969) that if the Cauchy problem has a local solution, this solution has a unique maximal extension. Since the causal structure of a space–time is invariant under conformal changes of metrics we may generalize this notion of maximality to the conformal setting. In this article we focus on conformally flat space–times of dimension greater or equal than 3. In this case, by a Lorentzian version of Liouville’s theorem, these space–times are locally modeled on the Einstein space–time. In the first part of the article we use this fact to prove the existence and uniqueness of the maximum extension for globally hyperbolic conformally flat space–times. In the second part we give a causal characterization of globally hyperbolic conformally flat maximal space–times whose developing map is a global diffeomorphism.

Tài liệu tham khảo

Barbot, T.: Globally hyperbolic flat space–times. J. Geom. Phys. 53(2), 123–165 (2005) Barbot, T.: Domaines globalement hyperboliques de l’espace de Minkowski et de l’espace anti-de Sitter, dans le livre Algèbre, dynamique et analyse pour la géométrie : aspects récents, Proceedings des Écoles de Géométrie et Systèmes dynamiques, Algérie, 2004–2007, pp. 101–138, Ellipse (2010) Barbot, T., Mérigot, Q.: Anosov AdS representations are quasi-Fuchsian. Groups Geom. Dyn. 6(3), 441–483 (2012) Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global lorentzian geometry. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 202, 2nd edn. Marcel Dekker Inc., New York (1996) Bernal, A.N., Sánchez, M.: Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Class. Quantum Gravity 24(3), 745 (2007) Bonsante, F.: Flat spacetimes with compact hyperbolic Cauchy surfaces. J. Differ. Geom. 69, 441–521 (2005) Cahen, M., Kerbrat, Y.: Transformations conformes des espaces symétriques pseudo-riemanniens. Ann. Math. Pura Appl. (4) 132, 275–289 (1983) (1982) Choquet-Brouhat, Y.: Théorème d’existence pour certaines systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952) Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969) Frances, C.: Géométrie et Dynamique Lorentziennes Conforme. Ph.D. thesis, Ecole normale supérieure de Lyon (2002) Frances, C.: Sur les variétés Lorentziennes dont le groupe conforme est essentiel. Math. Ann. 332(1), 103–119 (2005) Geroch, R.: Spinor structure of space–times in general relativity II. J. Math. Phys. 83, 342–348 (1970) Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: Geometry of Group Representations (Boulder, CO, 1987), Contemp. Math., vol. 74, pp. 169–198. American Mathematical Society, Providence, RI (1988) Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, London (1973). Cambridge Monographs on Mathematical Physics, No. 1 Hawking, S.W., King, A.R., McCarthy, P.J.: A new topology for curved space–time which incorporates the causal, differential, and conformal structures. J. Math. Phys. 17(2), 174–181 (1976) Kobayashi, S.: Transformation Groups in Differential Geometry. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1972 edition Matsumoto, S.: Foundations of flat conformal structure. In: Aspects of Low-Dimensional Manifolds, vol. 20, pp. 167–261. Adv. Stud. Pure Math., Kinokuniya, Tokyo (1992) Mess, G.: Lorentz spacetimes of constant curvature. Geom. Dedic. 126, 3–45 (2007) Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., pp. 299–358. Eur. Math. Soc., Zürich (2008) O’Neil, B.: Semi-Riemannian Geometry. A Series of Monographs and Textbooks. Samuel Eilenberg and Hyman Bass, Orlando (1983) Penrose, R.: Techniques of Differential Topology in Relativity. Society for Industrial and Applied Mathematics, Philadelphia, PA (1972). Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7 Penrose, R.: Republication of: conformal treatment of infinity. Gen. Relativ. Gravit. 43(3), 901–922 (2011) Ruh, E.A.: On Automorphism Group of a G-Structure. Ph.D. Thesis. Brown University (1864) Sachs, R.K., Wu, H.: General relativity and cosmology. Bull. Am. Math. Soc. 83, 1101–1164 (1977) Sbierski, J.: On the Existence of a Maximal Cauchy Development for the Einstein Equations—A Dezornification. arXiv:1309.7591