A semi-supervised clustering-based approach for stratification identification using borehole and cone penetration test data

Engineering Geology - Tập 248 - Trang 102-116 - 2019
Xiangrong Wang1, Hui Wang1, Robert Y. Liang1, Yang Liu2
1Department of Civil and Environmental Engineering and Engineering Mechanics, The University of Dayton, Dayton, OH 45469-0243, USA
2School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbaszadeh Shahri, 2015, Soil classification analysis based on piezocone penetration test data — a case study from a quick-clay landslide site in southwestern Sweden, Eng. Geol., 189, 32, 10.1016/j.enggeo.2015.01.022

ASTM, 2011

Bárdossy, 2001, Traditional and new ways to handle uncertainty in geology, Nat. Resour. Res., 10, 179, 10.1023/A:1012513107364

Basu, 2002, Semi-supervised clustering by seeding

Basu, 2004, A probabilistic framework for semi-supervised clustering, 59

Besag, 1975, Statistical analysis of non-lattice data, Statistician, 24, 179, 10.2307/2987782

Bilenko, 2004, Integrating constraints and metric learning in semi-supervised clustering, 11

Bol, 2013, The influence of pore pressure gradients in soil classification during piezocone penetration test, Eng. Geol., 157, 69, 10.1016/j.enggeo.2013.01.016

Cao, 2013, Bayesian approach for probabilistic site characterization using cone penetration tests, J. Geotech. Geoenviron., 139, 267, 10.1061/(ASCE)GT.1943-5606.0000765

Casella, 1992, Explaining the Gibbs sampler, Am. Stat., 46, 167, 10.1080/00031305.1992.10475878

Ching, 2015, Cone penetration test (CPT)-based stratigraphic profiling using the wavelet transform modulus maxima method, Can. Geotech. J., 52, 1993, 10.1139/cgj-2015-0027

Clifford, 1990, Markov random fields in statistics, 19

Das, 2009, Utilization of self-organizing map and fuzzy clustering for site characterization using piezocone data, Comput. Geotech., 36, 241, 10.1016/j.compgeo.2008.02.005

Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B Methodol., 39, 1, 10.1111/j.2517-6161.1977.tb01600.x

Depina, 2016, Cone penetration data classification with Bayesian mixture analysis, Georisk, 10, 27

Forbes, 2003, Hidden Markov random field model selection criteria based on mean field-like approximations, IEEE Trans. Pattern Anal. Mach. Intell., 25, 1089, 10.1109/TPAMI.2003.1227985

Geman, 1984, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 721, 10.1109/TPAMI.1984.4767596

Hegazy, 2002, Objective site characterization using clustering of piezocone data, J. Geotech. Geoenviron., 128, 986, 10.1061/(ASCE)1090-0241(2002)128:12(986)

Juang, 2002, Predicting geotechnical parameters of sands from CPT measurements using neural networks, Comp. Aided Civil Infrastruct. Eng., 17, 31, 10.1111/1467-8667.00250

Jung, 2008, Probabilistic soil identification based on cone penetration tests, Geotechnique, 58, 591, 10.1680/geot.2008.58.7.591

Kulis, 2009, Semi-supervised graph clustering: a kernel approach, 74, 1

Li, 2016, Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field, Eng. Geol., 201, 106, 10.1016/j.enggeo.2015.12.017

Liao, 2007, Stratigraphic delineation by three-dimensional clustering of piezocone data, Georisk, 1, 102

Mann, 1993, 241

McLachlan, 2007

McLachlan, 2004

Phoon, 1999, Characterization of geotechnical variability, Can. Geotech. J., 36, 612, 10.1139/t99-038

Phoon, 2003, Identification of statistically homogeneous soil layers using modified Bartlett statistics, J. Geotech. Geoenviron., 129, 649, 10.1061/(ASCE)1090-0241(2003)129:7(649)

Plewes, 1994, In situ sampling, density measurements, and testing of foundation soils at Duncan Dam, Can. Geotech. J., 31, 927, 10.1139/t94-108

Portela, 2014, Semi-supervised clustering for MR brain image segmentation, Expert Syst. Appl., 41, 1492, 10.1016/j.eswa.2013.08.046

Robertson, 2009, Interpretation of cone penetration tests-a unified approach, Can. Geotech. J., 46, 1337, 10.1139/T09-065

Robertson, 2010

Rogers, 2006, Subsurface exploration using the standard penetration test and the cone penetrometer test, Environ. Eng. Geosci., 12, 161, 10.2113/12.2.161

Schneider, 2001, Geotechnical site characterization in the greater Memphis area using cone penetration tests, Eng. Geol., 62, 169, 10.1016/S0013-7952(01)00060-6

Wagstaff, 2001, 577

Wang, 2013, Probabilistic identification of underground soil stratification using cone penetration tests, Can. Geotech. J., 50, 766, 10.1139/cgj-2013-0004

Wang, 2016, Probabilistic analysis of shield-driven tunnel in multiple strata considering stratigraphic uncertainty, Struct. Saf., 62, 88, 10.1016/j.strusafe.2016.06.007

Wang, 2017, A segmentation approach for stochastic geological modeling using hidden Markov random fields, Math. Geosci., 49, 145, 10.1007/s11004-016-9663-9

Wang, 2018, A hidden Markov random field model based approach for probabilistic site characterization using multiple cone penetration test data, Struct. Saf., 70, 128, 10.1016/j.strusafe.2017.10.011

Wang, 2018, A Bayesian unsupervised learning approach for identifying soil stratification using cone penetration data, Can. Geotech. J., 10.1139/cgj-2017-0709

Wellmann, 2010, Towards incorporating uncertainty of structural data in 3D geological inversion, Tectonophysics, 490, 141, 10.1016/j.tecto.2010.04.022

Wu, 1982, The potts model, Rev. Mod. Phys., 54, 235, 10.1103/RevModPhys.54.235

Zhu, 2005, Semi-supervised learning literature survey, 2, 4