A semi-supervised clustering-based approach for stratification identification using borehole and cone penetration test data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbaszadeh Shahri, 2015, Soil classification analysis based on piezocone penetration test data — a case study from a quick-clay landslide site in southwestern Sweden, Eng. Geol., 189, 32, 10.1016/j.enggeo.2015.01.022
ASTM, 2011
Bárdossy, 2001, Traditional and new ways to handle uncertainty in geology, Nat. Resour. Res., 10, 179, 10.1023/A:1012513107364
Basu, 2002, Semi-supervised clustering by seeding
Basu, 2004, A probabilistic framework for semi-supervised clustering, 59
Bilenko, 2004, Integrating constraints and metric learning in semi-supervised clustering, 11
Bol, 2013, The influence of pore pressure gradients in soil classification during piezocone penetration test, Eng. Geol., 157, 69, 10.1016/j.enggeo.2013.01.016
Cao, 2013, Bayesian approach for probabilistic site characterization using cone penetration tests, J. Geotech. Geoenviron., 139, 267, 10.1061/(ASCE)GT.1943-5606.0000765
Ching, 2015, Cone penetration test (CPT)-based stratigraphic profiling using the wavelet transform modulus maxima method, Can. Geotech. J., 52, 1993, 10.1139/cgj-2015-0027
Clifford, 1990, Markov random fields in statistics, 19
Das, 2009, Utilization of self-organizing map and fuzzy clustering for site characterization using piezocone data, Comput. Geotech., 36, 241, 10.1016/j.compgeo.2008.02.005
Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B Methodol., 39, 1, 10.1111/j.2517-6161.1977.tb01600.x
Depina, 2016, Cone penetration data classification with Bayesian mixture analysis, Georisk, 10, 27
Forbes, 2003, Hidden Markov random field model selection criteria based on mean field-like approximations, IEEE Trans. Pattern Anal. Mach. Intell., 25, 1089, 10.1109/TPAMI.2003.1227985
Geman, 1984, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 721, 10.1109/TPAMI.1984.4767596
Hegazy, 2002, Objective site characterization using clustering of piezocone data, J. Geotech. Geoenviron., 128, 986, 10.1061/(ASCE)1090-0241(2002)128:12(986)
Juang, 2002, Predicting geotechnical parameters of sands from CPT measurements using neural networks, Comp. Aided Civil Infrastruct. Eng., 17, 31, 10.1111/1467-8667.00250
Jung, 2008, Probabilistic soil identification based on cone penetration tests, Geotechnique, 58, 591, 10.1680/geot.2008.58.7.591
Kulis, 2009, Semi-supervised graph clustering: a kernel approach, 74, 1
Li, 2016, Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field, Eng. Geol., 201, 106, 10.1016/j.enggeo.2015.12.017
Liao, 2007, Stratigraphic delineation by three-dimensional clustering of piezocone data, Georisk, 1, 102
Mann, 1993, 241
McLachlan, 2007
McLachlan, 2004
Phoon, 1999, Characterization of geotechnical variability, Can. Geotech. J., 36, 612, 10.1139/t99-038
Phoon, 2003, Identification of statistically homogeneous soil layers using modified Bartlett statistics, J. Geotech. Geoenviron., 129, 649, 10.1061/(ASCE)1090-0241(2003)129:7(649)
Plewes, 1994, In situ sampling, density measurements, and testing of foundation soils at Duncan Dam, Can. Geotech. J., 31, 927, 10.1139/t94-108
Portela, 2014, Semi-supervised clustering for MR brain image segmentation, Expert Syst. Appl., 41, 1492, 10.1016/j.eswa.2013.08.046
Robertson, 2009, Interpretation of cone penetration tests-a unified approach, Can. Geotech. J., 46, 1337, 10.1139/T09-065
Robertson, 2010
Rogers, 2006, Subsurface exploration using the standard penetration test and the cone penetrometer test, Environ. Eng. Geosci., 12, 161, 10.2113/12.2.161
Schneider, 2001, Geotechnical site characterization in the greater Memphis area using cone penetration tests, Eng. Geol., 62, 169, 10.1016/S0013-7952(01)00060-6
Wagstaff, 2001, 577
Wang, 2013, Probabilistic identification of underground soil stratification using cone penetration tests, Can. Geotech. J., 50, 766, 10.1139/cgj-2013-0004
Wang, 2016, Probabilistic analysis of shield-driven tunnel in multiple strata considering stratigraphic uncertainty, Struct. Saf., 62, 88, 10.1016/j.strusafe.2016.06.007
Wang, 2017, A segmentation approach for stochastic geological modeling using hidden Markov random fields, Math. Geosci., 49, 145, 10.1007/s11004-016-9663-9
Wang, 2018, A hidden Markov random field model based approach for probabilistic site characterization using multiple cone penetration test data, Struct. Saf., 70, 128, 10.1016/j.strusafe.2017.10.011
Wang, 2018, A Bayesian unsupervised learning approach for identifying soil stratification using cone penetration data, Can. Geotech. J., 10.1139/cgj-2017-0709
Wellmann, 2010, Towards incorporating uncertainty of structural data in 3D geological inversion, Tectonophysics, 490, 141, 10.1016/j.tecto.2010.04.022
Zhu, 2005, Semi-supervised learning literature survey, 2, 4