Factors influencing stream temperatures in small streams: substrate effects and a shading experiment

Canadian Journal of Fisheries and Aquatic Sciences - Tập 61 Số 6 - Trang 913-923 - 2004
Sherri L. Johnson

Tóm tắt

The temperature of stream water is an important control of many in-stream processes. To better understand the processes and consequences of solar energy inputs to streams, stream temperature dynamics were examined before, during, and after experimental shading of a 150-m reach of a second-order stream in the Oregon Cascade Range. Maximum water temperatures declined significantly in the shaded reach, but minimum and mean temperatures were not modified. Heat budget calculations before shading show the dominance of solar energy as an influence of stream temperature. The influence of substrate type on stream temperature was examined separately where the water flowed first over bedrock and then through alluvial substrates. Maximum temperatures in the upstream bedrock reach were up to 8.6 °C higher and 3.4 °C lower than downstream in the alluvial reach. Better understanding of factors that influence not only maximum but minimum temperatures as well as diurnal temperature variation will highlight types of reaches in which stream temperature would be most responsive to changes in shading. Many apparent discrepancies in stream temperature literature can be explained by considering variation in the relative importance of different stream temperature drivers within and among streams and over time.

Từ khóa


Tài liệu tham khảo

Arscott D.B., 2001, Can. J. Fish. Aquat. Sci., 58, 2359, 10.1139/f01-183

Beschta R.L., 1997, Rangelands, 19, 25

Beschta R.L., 1988, Water Res. Bull., 24, 19, 10.1111/j.1752-1688.1988.tb00875.x

Beschta R.L., 2003, Range Manag., 55, 106

Brosofske K.D., 1997, Washington. Ecol. Appl., 7, 1188, 10.1890/1051-0761(1997)007[1188:HEOMGF]2.0.CO;2

Brown G.W., 1969, Water Resour. Res., 5, 68, 10.1029/WR005i001p00068

Brown G.W., 1970, Water Resour. Res., 6, 1133, 10.1029/WR006i004p01133

Clark E., 1999, Hydrol. Processes, 13, 423, 10.1002/(SICI)1099-1085(19990228)13:3<423::AID-HYP747>3.0.CO;2-#

Cox T.J., 2000, N.Z. J. Mar. Freshw. Res., 34, 203, 10.1080/00288330.2000.9516926

Evans E.C., 1997, Hydrol. Sci. J., 42, 199, 10.1080/02626669709492020

Evans E.C., 1998, Hydrol. Processes, 12, 575, 10.1002/(SICI)1099-1085(19980330)12:4<575::AID-HYP595>3.0.CO;2-Y

Haggerty R., 2002, Geophys. Res. Lett., 29, 13, 10.1029/2002GL014743

Hondzo M., 1994, Water Resour. Res., 30, 1503, 10.1029/93WR03508

Johnson S.L., 2003, Hydrol. Processes, 17, 497, 10.1002/hyp.5091

Johnson S.L., 2000, Oregon. Can. J. Fish. Aquat. Sci., 57, 30, 10.1139/f00-109

Kasahara T., 2003, Water Resour. Res., 39, 1005, 10.1029/2002WR001386

Larson L.L., 1996, Rangelands, 18, 149

Larson S.L., 2002, J. Range Manag., 55, 106, 10.2307/4003344

Li H.W., 1994, Oregon. Trans. Am. Fish. Soc., 123, 627, 10.1577/1548-8659(1994)123<0627:CEORDA>2.3.CO;2

Malard F., 2001, Can. J. Fish. Aquat. Sci., 58, 1319, 10.1139/f01-079

Malcolm I.A., 2002, Fish. Manag. Ecol., 9, 1, 10.1046/j.1365-2400.2002.00276.x

Poole G.C., 2001, Environ. Manag., 27, 787, 10.1007/s002670010188

Ringler N.H., 1975, Trans. Am. Fish. Soc., 104, 111, 10.1577/1548-8659(1975)104<111:EOLOWT>2.0.CO;2

Sinokrot B.A., 1993, Water Resour. Res., 29, 2299, 10.1029/93WR00540

Smith K., 1975, Oikos, 26, 228, 10.2307/3543713

Sugimoto S., 1997, J. For. Res., 2, 103, 10.1007/BF02348477

Torgerson C.E., 1999, Oregon. Ecol. Appl., 9, 301, 10.1890/1051-0761(1999)009[0301:MTRASH]2.0.CO;2

Webb B.W., 1999, Hydrol. Processes, 13, 309, 10.1002/(SICI)1099-1085(19990228)13:3<309::AID-HYP740>3.0.CO;2-7

White D.S., 1987, J. North Am. Benthol. Soc., 6, 85, 10.2307/1467218

Zwieniecki M., 1999, West. J. Appl. For., 14, 106, 10.1093/wjaf/14.2.106

Brown G.W., 1969, Water Resour. Res., 5, 68, 10.1029/WR005i001p00068

Sinokrot B.A., 1993, Water Resour. Res., 29, 2299, 10.1029/93WR00540

Webb B.W., 1999, Hydrol. Processes, 13, 309, 10.1002/(SICI)1099-1085(19990228)13:3<309::AID-HYP740>3.0.CO;2-7