Conservative interpolation on unstructured polyhedral meshes: An extension of the supermesh approach to cell-centered finite-volume variables

Computer Methods in Applied Mechanics and Engineering - Tập 200 - Trang 2797-2804 - 2011
Sandeep Menon1, David P. Schmidt1
1Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, 160 Governors Dr., Amherst MA 01003, USA

Tài liệu tham khảo

Farrell, 2009, Conservative interpolation between unstructured meshes via supermesh construction, Comput. Methods Appl. Mech. Engrg., 198, 2632, 10.1016/j.cma.2009.03.004 Perot, 2003, A moving unstructered staggered mesh method for the simulation of incompressible free surface flows, J. Comput. Phys., 184, 192, 10.1016/S0021-9991(02)00027-X Dai, 2005, Adaptive tetrahedral meshing in free-surface flow, J. Comput. Phys., 208, 228, 10.1016/j.jcp.2005.02.012 F. Brusiani, G.M. Bianchi, T. Lucchini, G. D’Errico, Implementation of a Finite-Element Based Mesh Motion Technique in an Open Source CFD Code, in: ASME Conference Proceedings 2009, vol. 43406, 2009, pp. 611–624. Pain, 2001, Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Engrg., 190, 3771, 10.1016/S0045-7825(00)00294-2 Margolin, 2003, Second-order sign-preserving conservative interpolation (remapping) on general grids, J. Comput. Phys., 184, 266, 10.1016/S0021-9991(02)00033-5 Loubère, 2005, A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian–Eulerian methods, J. Comput. Phys., 209, 105, 10.1016/j.jcp.2005.03.019 M. Berndt, J. Breil, S. Galera, M. Kucharik, P.-H. Maire, M. Shashkov, Two-Step Hybrid Remapping (Conservative Interpolation) for Multimaterial Arbitrary Lagrangian-Eulerian Methods, Tech. Rep., LA-UR-10-05438, Report of Los Alamos National Laboratory, Los Alamos, NM, USA, 2010. Kucharik, 2003, An efficient linearity-and-bound-preserving remapping method, J. Comput. Phys., 188, 462, 10.1016/S0021-9991(03)00187-6 Loubère, 2010, ReALE: A reconnection-based arbitrary-Lagrangian–Eulerian method, J. Comput. Phys., 229, 4724, 10.1016/j.jcp.2010.03.011 J.K. Dukowicz, N. Padial, REMAP3D: a conservative three dimensional remapping code, Tech. Rep., LA-12136-MS, Report of Los Alamos National Laboratory, Los Alamos, NM, USA, 1991. Alauzet, 2010, P1-conservative solution interpolation on unstructured triangular meshes, Int. J. Numer. Methods Engrg., 84, 1552, 10.1002/nme.2951 Grandy, 1999, Conservative remapping and region overlays by intersecting arbitrary polyhedra, J. Comput. Phys., 148, 433, 10.1006/jcph.1998.6125 Garimella, 2007, An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes, Comput. Fluids, 36, 224, 10.1016/j.compfluid.2006.01.014 Dukowicz, 1984, Conservative rezoning (remapping) for general quadrilateral meshes, J. Comput. Phys., 54, 411, 10.1016/0021-9991(84)90125-6 Dukowicz, 1987, Accurate conservative remapping (rezoning) for arbitrary Lagrangian–Eulerian computations, SIAM J. Sci. Stat. Comput., 8, 305, 10.1137/0908037 Jones, 1999, First- and second-order conservative remapping schemes for grids in spherical coordinates, Mon. Weather Rev., 127, 2204, 10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2 Azarenok, 2009, A method for conservative remapping on hexahedral meshes, Math. Models Comput. Simul., 1, 51, 10.1134/S2070048209010062 Jiao, 2004, Common-refinement-based data transfer between nonmatching meshes in multiphysics simulations, Int. J. Numer. Methods Engrg., 61, 2402, 10.1002/nme.1147 Farrell, 2011, Conservative interpolation between volume meshes by local Galerkin projection, Comput. Methods Appl. Mech. Engrg., 200, 89, 10.1016/j.cma.2010.07.015 H. Samet, A. Kochut, Octree approximation an compression methods, in: Proceedings First International Symposium on 3D Data Processing Visualization and Transmission, 2002. Ahn, 2008, Geometric algorithms for 3D interface reconstruction, 405 Eberly, 2000 Chazelle, 1992, An optimal algorithm for intersecting three-dimensional convex polyhedra, SIAM J. Comput., 21, 671, 10.1137/0221041 Farrell, 2011, The addition of fields on different meshes, J. Comput. Phys., 230, 3265, 10.1016/j.jcp.2011.01.028 Nichols, 1996 Roe, 1985, Large scale computations in fluid mechanics. Part 2, Lect. Appl. Math., 22, 163