Reconstruction of cell population dynamics using CFSE

BMC Bioinformatics - Tập 8 - Trang 1-20 - 2007
Andrew Yates1, Cliburn Chan2, Jessica Strid3, Simon Moon4,5, Robin Callard6, Andrew JT George7, Jaroslav Stark4,5
1Department of Biology, Emory University, Atlanta, USA
2Department of Biostatistics and Bioinformatics, Duke University Laboratory of Computational Immunology, Durham, USA
3Peter Gorer Department of Immunobiology, Guy's, King's and St Thomas' School of Medicine, King's College London, Guy's Hospital, London, UK
4Department of Mathematics, Imperial College London, London , UK
5Centre for Integrative Systems Biology at Imperial College (CISBIC), UK
6Immunobiology Unit, Institute of Child Health, London, UK
7Department of Immunology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK

Tóm tắt

Quantifying cell division and death is central to many studies in the biological sciences. The fluorescent dye CFSE allows the tracking of cell division in vitro and in vivo and provides a rich source of information with which to test models of cell kinetics. Cell division and death have a stochastic component at the single-cell level, and the probabilities of these occurring in any given time interval may also undergo systematic variation at a population level. This gives rise to heterogeneity in proliferating cell populations. Branching processes provide a natural means of describing this behaviour. We present a likelihood-based method for estimating the parameters of branching process models of cell kinetics using CFSE-labeling experiments, and demonstrate its validity using synthetic and experimental datasets. Performing inference and model comparison with real CFSE data presents some statistical problems and we suggest methods of dealing with them. The approach we describe here can be used to recover the (potentially variable) division and death rates of any cell population for which division tracking information is available.

Tài liệu tham khảo

Lyons AB: Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods. 2000, 243 (1–2): 147-54. 10.1016/S0022-1759(00)00231-3. Holyoake T, Jiang X, Eaves C, Eaves A: Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood. 1999, 94 (6): 2056-64. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H: Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science. 2001, 294 (5549): 2186-9. 10.1126/science.1065518. Prudhomme WA, Duggar KH, Lauffenburger DA: Cell population dynamics model for deconvolution of murine embryonic stem cell self-renewal and differentiation responses to cytokines and extracellular matrix. Biotechnol Bioeng. 2004, 88 (3): 264-72. 10.1002/bit.20244. Ueckert JE, Nebe von Caron G, Bos AP, ter Steeg PF: Flow cytometric analysis of Lactobacillus plantarum to monitor lag times, cell division and injury. Lett Appl Microbiol. 1997, 25 (4): 295-9. 10.1046/j.1472-765X.1997.00225.x. Bonhoeffer S, Mohri H, Ho D, Perelson AS: Quantification of cell turnover kinetics using 5-bromo-2'-deoxyuridine. J Immunol. 2000, 164 (10): 5049-54. Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B: Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol. 2000, 1: 47-53. 10.1038/76907. Bernard S, Pujo-Menjouet L, Mackey MC: Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophys J. 2003, 84 (5): 3414-24. Pilyugin SS, Ganusov VV, Murali-Krishna K, Ahmed R, Antia R: The rescaling method for quantifying the turnover of cell populations. J Theor Biol. 2003, 225 (2): 275-83. 10.1016/S0022-5193(03)00245-5. Ganusov VV, Pilyugin SS, de Boer RJ, Murali-Krishna K, Ahmed R, Antia R: Quantifying cell turnover using CFSE data. J Immunol Methods. 2005, 298 (1–2): 183-200. 10.1016/j.jim.2005.01.011. Asquith B, Debacq C, Florins A, Gillet N, Sanchez-Alcaraz T, Mosley A, Willems L: Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (CFSE). Proc Biol Sci. 2006, 273 (1590): 1165-71. 10.1098/rspb.2005.3432. de Boer R, Perelson AS: Estimating division and death rates from CFSE data. J Comp Appl Math. 2005, 184: 140-164. 10.1016/j.cam.2004.08.020. Smith JA, Martin L: Do cells cycle?. Proc Natl Acad Sci USA. 1973, 70 (4): 1263-7. 10.1073/pnas.70.4.1263. Gett AV, Hodgkin PD: A cellular calculus for signal integration by T cells. Nat Immunol. 2000, 1 (3): 239-44. 10.1038/79782. Deenick EK, Gett AV, Hodgkin PD: Stochastic model of T cell proliferation: A calculus revealing IL-2 regulation of precursor frequencies, cell cycle Time, and survival. J Immunol. 2003, 170 (10): 4963-72. De Boer RJ, Ganusov VV, Milutinovic D, Hodgkin PD, Perelson AS: Estimating lymphocyte division and death rates from CFSE data. Bull Math Biol. 2006, 68 (5): 1011-31. 10.1007/s11538-006-9094-8. Leon K, Faro J, Carneiro J: A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J Theor Biol. 2004, 229 (4): 455-76. 10.1016/j.jtbi.2004.04.011. Jagers P: Branching Processes with Biological Applications. 1975, London: Wiley Yakovlev AY, Yanev NM: Transient processes in cell proliferation kinetics. 1989, Springer-Verlag Hardy K, Spanos S, Becker D, Iannelli P, Winston RM, Stark J: From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad Sci USA. 2001, 98 (4): 1655-60. 10.1073/pnas.98.4.1655. Kimmel M, Axelrod D: Branching Processes in Biology, of Interdisciplinary Applied Mathematics. 2002, Springer, 19: Hyrien O, Mayer-Proschel M, Noble M, Yakovlev A: A stochastic model to analyze clonal data on multi-type cell populations. Biometrics. 2005, 61: 199-207. 10.1111/j.0006-341X.2005.031210.x. Harris T: The Theory of Branching Processes. 1963, Springer-Verlag Mathematica 5.2, Wolfram Research, Inc. 2005 McCullagh P, Nelder J: Generalized Linear Models, of Monographs on Statistics and Applied Probability. 1989, Chapman and Hall/CRC, 37: Stuart A, Ord J: Classical Inference and Relationship (Kendall's Advanced Theory of Statistics). 1991, Oxford University Press, 2: Li B: A deviance function for the quasi-likelihood method. Biometrika. 1993, 80 (4): 741-753. 10.1093/biomet/80.4.741. Smyth G: Pearson's goodness of fit statistic as a score test statistic. Science and Statistics: A Festschrift for Terry Speed, of IMS Lecture Notes – Monograph Series. Edited by: Goldstein DR. 2003, Institute of Mathematical Statistics, Beachwood, Ohio, 40: 115-126. Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete data via the EM algorithm. Journal Royal Stat Soc B. 1977, 39: 1-38. Burnham KP, Anderson DR: Model Selection and Multimodel Inference. 2002, Springer, 2 Lindstrom MJ, Bates D: Nonlinear Mixed Effects Models for Repeated Measures Data. Biometrics. 1990, 46: 673-687. 10.2307/2532087. Pinheiro JC, Bates DM: Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model. Journal of Computational and Graphical Statistics. 1995, 4: 12-35. 10.2307/1390625. Nelder J, Pregibon D: An Extended Quasi-Likelihood Function. Biometrika. 1987, 74 (2): 221-232. 10.1093/biomet/74.2.221.