Multiple ordered solutions for a class of quasilinear problem with oscillating nonlinearity

Springer Science and Business Media LLC - Tập 26 - Trang 1-19 - 2024
Gelson C. G. dos Santos1, Julio Roberto S. Silva2
1Faculdade de Matemática, Universidade Federal do Pará, Belém, Brazil
2Universidade Federal do Pará Campus Universitário de Cametá, Cametá, Brazil

Tóm tắt

In this paper, we use truncation argument combined with method of minimization, argument of comparison, topological degree arguments and sub-supersolutions method to show existence of multiple positive solutions (which are ordered in the $$C(\overline{\Omega })$$ -norm) for the following class of problems: $$\begin{aligned} \left\{ \begin{aligned} -&\Delta u - \kappa \Delta (u^{2}) u +\mu |u|^{q-2}u = \lambda f(u)+h(u) \ \ \text{ in } \ \ \Omega , \\ u&=0 \ \ \text{ on } \ \ \partial \Omega , \end{aligned} \right. \end{aligned}$$ where $$\Omega $$ is a bounded smooth domain of $$\mathbb {R}^N$$ $$(N\ge 1), \kappa ,\mu ,\lambda > 0,q\ge 1$$ are parameters, the nonlinearity $$f: \mathbb {R}\rightarrow \mathbb {R}$$ is a continuous function that can change sign and satisfies an area condition and $$h: \mathbb {R}\rightarrow \mathbb {R}$$ is a general nonlinearity.

Tài liệu tham khảo

Alarcón, S., Iturriaga, L., Ritorto, A.: Nonnegative solutions for the fractional Laplacian involving a nonlinearity with zeros. Manuscr. Math. 167, 345–363 (2022). https://doi.org/10.1007/s00229-021-01275-w Ambrosetti, A., Hess, P.: Positive solutions of asymptotically linear elliptic eigenvalue. Math. Anal. Appl. 73(73), 411–422 (1980) Arcoya, D., Boccardo, L., Orsina, L.: Critical points for functionals with quasilinear singular Euler–Lagrange equations. Calc. Var. Partial Differ. Equ. 47, 159–180 (2013) Bass, F., Nasanov, N.N.: Nonlinear electromagnetic spin waves. Phys. Rep. 189, 165–223 (1990) Borovskii, A., Galkin, A.: Dynamical modulation of an ultrashort high-intensity laser pulse in matter. JETP 77, 562–573 (1983) Brandi, H., Manus, C., Mainfray, G., Lehner, T., Bonnaud, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Phys. Fluids B 5, 3539–3550 (1993) Brizhik, L., Eremko, A., Piette, B., Zakrzewski, W.J.: Static solutions of a Ddimensional modified nonlinear Schrödinger equation. Nonlinearity 16, 1481–1497 (2003) Brown, K.J., Budin, H.: Multiple positive solutions for a class of nonlinear boundary value problems. J. Math. Anal. Appl. 60, 329–338 (1977) Brown, K.J., Budin, H.: On the existence of positive solutions for a class of semilinear elliptic boundary value problems. SIAM J. Math. Anal. 60, 875–883 (1979) Chen, X.L., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse. Phys. Rev. Lett. 70, 2082–2085 (1993) Chen, S., Santos, C.A., Yang, M., Zhou, J.: Bifurcation analysis for a modified quasilinear equation with negative exponent. Adv. Nonlinear Anal. 11, 684–701 (2022) Chipot, M., Roy, P.: Existence results for some functional elliptic equations. Differ. Integr. Equ. 27, 289–300 (2014) Cintra, W., Medeiros, E., Severo, U.: On positive solutions for a class of quasilinear elliptic equations. Z. Angew. Math. Phys. 70, 79 (2019) Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004) Corrêa, F.J.S.A., Carvalho, M.L., Gonçalves, J.V.A., Silva, K.O.: Positive solutions of strongly nonlinear elliptic problems. Asymptot. Anal. 93, 1–20 (2015). https://doi.org/10.3233/ASY-141278 Corrêa, F.J.S.A., Corrêa, A.S.S., Santos Junior, J.R.: Multiple ordered positive solutions of an elliptic problem involving the p-q-Laplacian. J. Convex Anal. 21(4), 1023–1042 (2014) Corrêa, F.J.S.A., de Lima, R.N., Nóbrega, A.B.: On positive solutions of elliptic equations with oscillating nonlinearity in \(\mathbb{R} ^N\). Mediterr. J. Math. 19, 62 (2022). https://doi.org/10.1007/s00009-022-01993-9 Corrêa, F.J.S.A., dos Santos, G.C.G., Tavares, L.S.: Solution for nonvariational quasilinear elliptic systems via sub-supersolution technique and Galerkin method. Z. Angew. Math. Phys. 72, 99 (2021). https://doi.org/10.1007/s00033-021-01532-8 Dancer, E.N.: Multiple fixed points of positive mappings. J. Reine Angew. Math. 371, 46–66 (1986) Dancer, E., Schmitt, K.: On positive solutions of semilinear elliptic equations. Proc. Am. Math. Soc. 101, 445–452 (1987) de Figueiredo, D.G.: On the existence of multiple ordered solutions for nonlinear eigenvalue problems. Nonlinear Anal. TMA 11, 481–492 (1987) do Ó, J.M., Moameni, A.: Solutions for singular quasilinear Schrödinger equations with one parameter. Commun. Pure Appl. Anal. 9, 1011–1023 (2010) do Ó, J.M., Severo, U.: Solitary waves for a class of quasilinear Schrödinger equations in dimension two. Calc. Var. 38, 275–315 (2010). https://doi.org/10.1007/s00526-009-0286-6 dos Santos, G., Figueiredo, G.M., Severo, U.B.: Multiple solutions for a class of singular quasilinear problems. J. Math. Anal. Appl. 480(2), 123405 (2019) dos Santos, G., Figueiredo, G.M., Pimenta, M.T.O.: Multiple ordered solutions for a class of problems involving the 1-Laplacian operator. J. Geom. Anal. 32, 140 (2022). https://doi.org/10.1007/s12220-022-00881-8 Fang, X.-D., Szulkin, A.: Multiple solutions for a quasilinear Schrödinger equation. J. Differ. Equ. 254, 2015–2032 (2013) Figueiredo, G.M., Júnior, J.R.S., Suarez, A.: Structure of the set of positive solutions of a non-linear Schrödinger equation. Isr. J. Math. 227, 485–505 (2018) Figueiredo, G.M., Ruviaro, R., Junior, J.O.: Quasilinear equations involving critical exponent and concave nonlinearity at the origin. Milan J. Math. (2020). https://doi.org/10.1007/s00032-020-00315-63 Figueiredo, G.M., Severo, U.B., Siciliano, G.: Multiplicity of positive solutions for a quasilinear Schrödinger equation with an almost critical nonlinearity. Adv. Nonlinear Stud. 20(4), 933–963 (2020) García-Melián, J., Iturriaga, L.: Multiplicity of solutions for some semilinear problems involving nonlinearities with zeros. Isr. J. Math. 210, 233–244 (2015) Hartmann, B., Zakrzewski, W.J.: Electrons on hexagonal lattices and applications to nanotubes. Phys. Rev. B 68, 184302 (2003) Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schroödinger equation. Z. Phys. B 37, 83–87 (1980) Hess, P.: On multiple positive solutions of nonlinear elliptic eigenvalue problems. Commun. Partial Differ. Equ. 6, 951–961 (1981) Iturriaga, L., Massa, E., Sánchez, J., Ubilla, P.: Positive solutions of the p-Laplacian involving a superlinear nonlinearity with zeros. J. Differ. Equ. 248, 309–327 (2010) Jing, Y., Liu, Z., Wang, Z.-Q.: Multiple solutions of a parameter-dependent quasilinear elliptic equation. Calc. Var. Partial Differ. Equ. 55, 150 (2016) Kavian, O.: Introduction á la théorie des points critiques et applications aux problémes elliptíques, Mathématiques and Applications, vol. 13. Springer, Paris (1993) Kurihura, S.: Large-amplitude quasi-solitons in super fluids films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981) Laedke, E., Spatschek, K.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1963) Lima Alves, R.: Existence of positive solution for a singular elliptic problem with an asymptotically linear nonlinearity. Mediterr. J. Math. 18, 4 (2021) Liu, J., Wang, Y., Wang, Z.-Q.: Soliton solutions for quasilinear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003) Liu, J., Liu, X., Wang, Z.-Q.: Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete Contin. Dyn. Syst. Ser. S 14, 1779–1799 (2021) Loc, N.H., Schmitt, K.: On positive solutions of quasilinear elliptic equations. Differ. Integr. Equ. 22, 829–842 (2009) Makhankov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984) Motreanu, D., Motreanu, V., Papageorgiou, N.S.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014) Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Phys. A 110, 41–80 (1982) Ritchie, B.: Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 50, 687–689 (1994) Santos, C.A., Yang, M., Zhou, J.: Global multiplicity of solutions for a modified elliptic problem with singular terms. Nonlinearity 34, 7842–7871 (2021) Xiaohui, Y.: Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros. Commun. Pure Appl. Anal. 12, 451–459 (2013)