N,N’ bis-(2-mercaptoethyl) isophthalamide induces developmental delay in Caenorhabditis elegans by promoting DAF-16 nuclear localization

Toxicology Reports - Tập 7 - Trang 930-937 - 2020
Tao Ke1, Félix Alexandre Antunes Soares2, Abel Santamaría3, Aaron B. Bowman4, Anatoly V. Skalny5, Michael Aschner1
1Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
2Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
3Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
4School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
5Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia

Tài liệu tham khảo

Chowdhury, 2018, Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis, BMJ, 362, k3310, 10.1136/bmj.k3310 Farina, 2013, Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury, Neurochem. Int., 62, 575, 10.1016/j.neuint.2012.12.006 Sears, 2013, Chelation: harnessing and enhancing heavy metal Detoxification-A review, Transfus. Apher. Sci. Vilensky, 2003, British anti-Lewisite (dimercaprol): an amazing history, Ann. Emerg. Med., 41, 378, 10.1067/mem.2003.72 Bjorklund, 2017, Metal chelators and neurotoxicity: lead, mercury, and arsenic, Arch. Toxicol., 91, 3787, 10.1007/s00204-017-2100-0 George, 2004, Mercury binding to the chelation therapy agents DMSA and DMPS and the rational design of custom chelators for mercury, Chem. Res. Toxicol., 17, 999, 10.1021/tx049904e Zaman, 2007, Cd, Hg, and Pb Compounds of Benzene-1,3-diamidoethanethiol (BDETH(2)), Inorg. Chem., 46, 1975, 10.1021/ic0607639 Secor, 2011, Int. J. Toxicol., 30, 619, 10.1177/1091581811422413 Clarke, 2012, Amelioration of acute mercury toxicity by a novel, non-toxic lipid soluble chelator N,N’bis-(2-mercaptoethyl)isophthalamide: effect on animal survival, health, mercury excretion and organ accumulation, Toxicol. Environ. Chem., 94, 616, 10.1080/02772248.2012.657199 Matlock, 2002, Chemical precipitation of lead from lead battery recycling plant wastewater, Ind. Eng. Chem. Res., 41, 1579, 10.1021/ie010800y Patel, 2012, Toxicol Mech Method, 22, 383, 10.3109/15376516.2012.673089 Schutzmeier, 2018, Efficacy of N,N’bis-(2-mercaptoethyl) isophthalamide on mercury intoxication: a randomized controlled trial, Environ. Health, 17, 15, 10.1186/s12940-018-0358-1 Ke, 2019, Bacteria affect Caenorhabditis elegans responses to MeHg toxicity, Neurotoxicology, 75, 129, 10.1016/j.neuro.2019.09.002 Schindler, 2014, Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways, PLoS Genet., 10, 10.1371/journal.pgen.1004426 O’Rourke, 2006, Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum, Genome Res., 16, 1005, 10.1101/gr.50823006 Helmcke, 2009, Characterization of the effects of methylmercury on Caenorhabditis elegans, Toxicol Appl Pharm, 240, 265, 10.1016/j.taap.2009.03.013 Golden, 1984, The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature, Dev. Biol. (Basel), 102, 368, 10.1016/0012-1606(84)90201-X Ailion, 2000, Dauer formation induced by high temperatures in Caenorhabditis elegans, Genetics, 156, 1047, 10.1093/genetics/156.3.1047 Lin, 2001, Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling, Nat. Genet., 28, 139, 10.1038/88850 Xiong, 2017, An enhanced C. elegans based platform for toxicity assessment, Sci. Rep., 7, 9839, 10.1038/s41598-017-10454-3 Dorman, 1995, The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans, Genetics, 141, 1399, 10.1093/genetics/141.4.1399 Lee, 2003, DAF-16 target genes that control C-elegans life-span and metabolism, Science, 300, 644, 10.1126/science.1083614 Lin, 1997, daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans, Science, 278, 1319, 10.1126/science.278.5341.1319 Kaestner, 2000, The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism, Trends Endocrinol. Metab., 11, 281, 10.1016/S1043-2760(00)00271-X Shih, 1999, Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3 alpha-deficient mice, P Natl Acad Sci USA, 96, 10152, 10.1073/pnas.96.18.10152 Friedman, 1988, A Mutation in the Age-1 Gene in Caenorhabditis-Elegans Lengthens Life and Reduces Hermaphrodite Fertility, Genetics, 118, 75, 10.1093/genetics/118.1.75 Murphy, 2003, Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans, Nature, 424, 277, 10.1038/nature01789 Ogg, 1997, The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C-elegans, Nature, 389, 994, 10.1038/40194 Carter, 2007, FOXO transcription factors, Current biology: CB, 17, R113, 10.1016/j.cub.2007.01.008 Juarez, 2008, Superoxide dismutase 1 (SOD1) is essential for H(2)O(2)-mediated oxidation and inactivation of phosphatases in growth factor signaling, Proc. Natl. Acad. Sci. U. S. A., 105, 7147, 10.1073/pnas.0709451105 Hester, 2017, Zinc deficiency reduces fertility in C. elegans hermaphrodites and disrupts oogenesis and meiotic progression, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 191, 203, 10.1016/j.cbpc.2016.09.006 Kumar, 2016, Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans, PLoS One, 11, 10.1371/journal.pone.0153513 Zecic, 2019, The nutritional requirements of Caenorhabditis elegans, Genes Nutr., 14, 15, 10.1186/s12263-019-0637-7 Novakovic, 2019, Zinc transporters maintain longevity by influencing insulin/IGF-1 activity in Caenorhabditis elegans, FEBS Lett.