N,N’ bis-(2-mercaptoethyl) isophthalamide induces developmental delay in Caenorhabditis elegans by promoting DAF-16 nuclear localization
Tài liệu tham khảo
Chowdhury, 2018, Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis, BMJ, 362, k3310, 10.1136/bmj.k3310
Farina, 2013, Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury, Neurochem. Int., 62, 575, 10.1016/j.neuint.2012.12.006
Sears, 2013, Chelation: harnessing and enhancing heavy metal Detoxification-A review, Transfus. Apher. Sci.
Vilensky, 2003, British anti-Lewisite (dimercaprol): an amazing history, Ann. Emerg. Med., 41, 378, 10.1067/mem.2003.72
Bjorklund, 2017, Metal chelators and neurotoxicity: lead, mercury, and arsenic, Arch. Toxicol., 91, 3787, 10.1007/s00204-017-2100-0
George, 2004, Mercury binding to the chelation therapy agents DMSA and DMPS and the rational design of custom chelators for mercury, Chem. Res. Toxicol., 17, 999, 10.1021/tx049904e
Zaman, 2007, Cd, Hg, and Pb Compounds of Benzene-1,3-diamidoethanethiol (BDETH(2)), Inorg. Chem., 46, 1975, 10.1021/ic0607639
Secor, 2011, Int. J. Toxicol., 30, 619, 10.1177/1091581811422413
Clarke, 2012, Amelioration of acute mercury toxicity by a novel, non-toxic lipid soluble chelator N,N’bis-(2-mercaptoethyl)isophthalamide: effect on animal survival, health, mercury excretion and organ accumulation, Toxicol. Environ. Chem., 94, 616, 10.1080/02772248.2012.657199
Matlock, 2002, Chemical precipitation of lead from lead battery recycling plant wastewater, Ind. Eng. Chem. Res., 41, 1579, 10.1021/ie010800y
Patel, 2012, Toxicol Mech Method, 22, 383, 10.3109/15376516.2012.673089
Schutzmeier, 2018, Efficacy of N,N’bis-(2-mercaptoethyl) isophthalamide on mercury intoxication: a randomized controlled trial, Environ. Health, 17, 15, 10.1186/s12940-018-0358-1
Ke, 2019, Bacteria affect Caenorhabditis elegans responses to MeHg toxicity, Neurotoxicology, 75, 129, 10.1016/j.neuro.2019.09.002
Schindler, 2014, Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways, PLoS Genet., 10, 10.1371/journal.pgen.1004426
O’Rourke, 2006, Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum, Genome Res., 16, 1005, 10.1101/gr.50823006
Helmcke, 2009, Characterization of the effects of methylmercury on Caenorhabditis elegans, Toxicol Appl Pharm, 240, 265, 10.1016/j.taap.2009.03.013
Golden, 1984, The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature, Dev. Biol. (Basel), 102, 368, 10.1016/0012-1606(84)90201-X
Ailion, 2000, Dauer formation induced by high temperatures in Caenorhabditis elegans, Genetics, 156, 1047, 10.1093/genetics/156.3.1047
Lin, 2001, Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling, Nat. Genet., 28, 139, 10.1038/88850
Xiong, 2017, An enhanced C. elegans based platform for toxicity assessment, Sci. Rep., 7, 9839, 10.1038/s41598-017-10454-3
Dorman, 1995, The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans, Genetics, 141, 1399, 10.1093/genetics/141.4.1399
Lee, 2003, DAF-16 target genes that control C-elegans life-span and metabolism, Science, 300, 644, 10.1126/science.1083614
Lin, 1997, daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans, Science, 278, 1319, 10.1126/science.278.5341.1319
Kaestner, 2000, The hepatocyte nuclear factor 3 (HNF3 or FOXA) family in metabolism, Trends Endocrinol. Metab., 11, 281, 10.1016/S1043-2760(00)00271-X
Shih, 1999, Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3 alpha-deficient mice, P Natl Acad Sci USA, 96, 10152, 10.1073/pnas.96.18.10152
Friedman, 1988, A Mutation in the Age-1 Gene in Caenorhabditis-Elegans Lengthens Life and Reduces Hermaphrodite Fertility, Genetics, 118, 75, 10.1093/genetics/118.1.75
Murphy, 2003, Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans, Nature, 424, 277, 10.1038/nature01789
Ogg, 1997, The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C-elegans, Nature, 389, 994, 10.1038/40194
Carter, 2007, FOXO transcription factors, Current biology: CB, 17, R113, 10.1016/j.cub.2007.01.008
Juarez, 2008, Superoxide dismutase 1 (SOD1) is essential for H(2)O(2)-mediated oxidation and inactivation of phosphatases in growth factor signaling, Proc. Natl. Acad. Sci. U. S. A., 105, 7147, 10.1073/pnas.0709451105
Hester, 2017, Zinc deficiency reduces fertility in C. elegans hermaphrodites and disrupts oogenesis and meiotic progression, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 191, 203, 10.1016/j.cbpc.2016.09.006
Kumar, 2016, Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans, PLoS One, 11, 10.1371/journal.pone.0153513
Zecic, 2019, The nutritional requirements of Caenorhabditis elegans, Genes Nutr., 14, 15, 10.1186/s12263-019-0637-7
Novakovic, 2019, Zinc transporters maintain longevity by influencing insulin/IGF-1 activity in Caenorhabditis elegans, FEBS Lett.