Experimental study on transient thermal characteristics of stagger-arranged lithium-ion battery pack with air cooling strategy

International Journal of Heat and Mass Transfer - Tập 143 - Trang 118576 - 2019
Xiaoling Yu1, Zhao Lu1, Liyu Zhang2, Lichuan Wei1,3, Xin Cui2, Liwen Jin2
1School of Energy and Power Engineering, Xi’an Jiaotong University, 710049, China
2Institute of Building Environment and Sustainable Technology, Xi’an Jiaotong University, 710049, China
3Shenzhen Envicool Technology Co., Ltd., Shenzhen, 518129, China

Tài liệu tham khảo

Xiong, 2014, A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles, Appl. Energy, 113, 1421, 10.1016/j.apenergy.2013.09.006 Xiong, 2014, A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles, Appl. Energy, 113, 463, 10.1016/j.apenergy.2013.07.061 He, 2012, Online estimation of model parameters and state-of charge of LiFePO4 batteries in electric vehicles, Appl. Energy, 89, 413, 10.1016/j.apenergy.2011.08.005 Sun, 2012, Model-based dynamic multiparameter method for peak power estimation of lithium–ion batteries, Appl. Energy, 96, 378, 10.1016/j.apenergy.2012.02.061 Rao, 2011, A review of power battery thermal energy management, Renew. Sustain. Energy Rev., 15, 4554, 10.1016/j.rser.2011.07.096 Lindgren, 2016, Effect of extreme temperatures on battery charging and performance of electric vehicles, J. Power Sources, 328, 37, 10.1016/j.jpowsour.2016.07.038 Hausmann, 2013, Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency, J. Power Sources, 235, 148, 10.1016/j.jpowsour.2013.01.174 Wu, 2017, Impact of temperature and discharge rate on the aging of a LiCoO2/LiNi0.8Co0.15Al0.05O2 lithium-ion pouch cell, J. Electrochem. Soc., 165, A1438, 10.1149/2.0401707jes Lei, 2013, A study on the low-temperature performance of lithium-ion battery for electric vehicles, Automot. Eng., 35, 927 Liao, 2012, Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries, Electrochim. Acta, 60, 269, 10.1016/j.electacta.2011.11.041 Khateeb, 2005, Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation, J. Power Sources, 142, 345, 10.1016/j.jpowsour.2004.09.033 Panchal, 2017, Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery, Int. J. Heat Mass Transf., 109, 1239, 10.1016/j.ijheatmasstransfer.2017.03.005 Li, 2013, Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation, J. Power Sources, 238, 395, 10.1016/j.jpowsour.2013.04.073 Wang, 2014, Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies, Appl. Energy, 134, 229, 10.1016/j.apenergy.2014.08.013 Mahamud, 2011, Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity, J. Power Sources, 196, 5685, 10.1016/j.jpowsour.2011.02.076 Saw, 2016, Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling, Appl. Energy, 177, 783, 10.1016/j.apenergy.2016.05.122 Lu, 2018, Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement, Appl. Therm. Eng., 136, 28, 10.1016/j.applthermaleng.2018.02.080 Karimi, 2013, Thermal management of lithium-ion batteries for electric vehicles, Int. J. Energy Res., 37, 13, 10.1002/er.1956 Zhou, 2019, Thermal performance of cylindrical lithium-ion battery thermal management system based on air distribution pipe, Int. J. Heat Mass Transf., 131, 984, 10.1016/j.ijheatmasstransfer.2018.11.116 Chen, 2018, Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement, Energy, 145, 603, 10.1016/j.energy.2017.12.110 Panchal, 2019, Heat and mass transfer modeling and investigation of multiple LiFePO4/graphite batteries in a pack at low C-rates with water-cooling, Int. J. Heat Mass Transf., 135, 368, 10.1016/j.ijheatmasstransfer.2019.01.076 Panchal, 2016, Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery, Int. J. Heat Mass Transf., 101, 1093, 10.1016/j.ijheatmasstransfer.2016.05.126 Panchal, 2017, Uneven temperature and voltage distributions due to rapid discharge rates and different boundary conditions for series-connected LiFePO4 batteries, Int. Commun. Heat Mass Transf., 81, 210, 10.1016/j.icheatmasstransfer.2016.12.026 Panchal, 2016, Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions, Int. Commun. Heat Mass Transf., 71, 35, 10.1016/j.icheatmasstransfer.2015.12.004 Jin, 2014, Ultra-thin minichannel LCP for EV battery thermal management, Appl. Energy, 113, 1786, 10.1016/j.apenergy.2013.07.013 Javani, 2014, Modeling of passive thermal management for electric vehicle battery packs with PCM between cells, Appl. Therm. Eng., 73, 307, 10.1016/j.applthermaleng.2014.07.037 Yang, 2017, The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage, Appl. Energy, 194, 508, 10.1016/j.apenergy.2016.09.050 Qu, 2019, Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application, Int. J. Heat Mass Transf., 129, 773, 10.1016/j.ijheatmasstransfer.2018.10.019 Ling, 2015, A hybrid thermal management system for lithium-ion batteries combining phase change materials with forced-air cooling, Appl. Energy, 148, 403, 10.1016/j.apenergy.2015.03.080 Sabbah, 2008, Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution, J. Power Sources, 182, 630, 10.1016/j.jpowsour.2008.03.082 Wang, 2015, Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model, Appl. Therm. Eng., 90, 521, 10.1016/j.applthermaleng.2015.07.033 Moffat, 1988, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci., 1, 3, 10.1016/0894-1777(88)90043-X C.G. Motloch, J.P. Christopheresen, J.R. Belt, R.B. Wright, G.L. Hunt, R.A. Sutula, T. Duong, T.J. Tartamella, H.J. Haskins, T.J. Miller, High-power battery testing procedures and analytical methodologies for HEV’s SAE Technical Paper 2002-01-1950, 2002. Lu, 2019, A comprehensive study on temperature-dependent performance of lithium-ion battery, Appl. Therm. Eng., 158, 10.1016/j.applthermaleng.2019.113800 Watanabe, 2014, J. Power Source, 260, 50, 10.1016/j.jpowsour.2014.02.103 Striebel, 2004, Diagnostic analysis of electrodes from high-power lithium-ion cells cycled under different conditions, J. Electrochem. Soc., 151, A857, 10.1149/1.1710514