Experimental study on transient thermal characteristics of stagger-arranged lithium-ion battery pack with air cooling strategy
Tài liệu tham khảo
Xiong, 2014, A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles, Appl. Energy, 113, 1421, 10.1016/j.apenergy.2013.09.006
Xiong, 2014, A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles, Appl. Energy, 113, 463, 10.1016/j.apenergy.2013.07.061
He, 2012, Online estimation of model parameters and state-of charge of LiFePO4 batteries in electric vehicles, Appl. Energy, 89, 413, 10.1016/j.apenergy.2011.08.005
Sun, 2012, Model-based dynamic multiparameter method for peak power estimation of lithium–ion batteries, Appl. Energy, 96, 378, 10.1016/j.apenergy.2012.02.061
Rao, 2011, A review of power battery thermal energy management, Renew. Sustain. Energy Rev., 15, 4554, 10.1016/j.rser.2011.07.096
Lindgren, 2016, Effect of extreme temperatures on battery charging and performance of electric vehicles, J. Power Sources, 328, 37, 10.1016/j.jpowsour.2016.07.038
Hausmann, 2013, Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency, J. Power Sources, 235, 148, 10.1016/j.jpowsour.2013.01.174
Wu, 2017, Impact of temperature and discharge rate on the aging of a LiCoO2/LiNi0.8Co0.15Al0.05O2 lithium-ion pouch cell, J. Electrochem. Soc., 165, A1438, 10.1149/2.0401707jes
Lei, 2013, A study on the low-temperature performance of lithium-ion battery for electric vehicles, Automot. Eng., 35, 927
Liao, 2012, Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries, Electrochim. Acta, 60, 269, 10.1016/j.electacta.2011.11.041
Khateeb, 2005, Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation, J. Power Sources, 142, 345, 10.1016/j.jpowsour.2004.09.033
Panchal, 2017, Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery, Int. J. Heat Mass Transf., 109, 1239, 10.1016/j.ijheatmasstransfer.2017.03.005
Li, 2013, Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation, J. Power Sources, 238, 395, 10.1016/j.jpowsour.2013.04.073
Wang, 2014, Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies, Appl. Energy, 134, 229, 10.1016/j.apenergy.2014.08.013
Mahamud, 2011, Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity, J. Power Sources, 196, 5685, 10.1016/j.jpowsour.2011.02.076
Saw, 2016, Computational fluid dynamic and thermal analysis of lithium-ion battery pack with air cooling, Appl. Energy, 177, 783, 10.1016/j.apenergy.2016.05.122
Lu, 2018, Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement, Appl. Therm. Eng., 136, 28, 10.1016/j.applthermaleng.2018.02.080
Karimi, 2013, Thermal management of lithium-ion batteries for electric vehicles, Int. J. Energy Res., 37, 13, 10.1002/er.1956
Zhou, 2019, Thermal performance of cylindrical lithium-ion battery thermal management system based on air distribution pipe, Int. J. Heat Mass Transf., 131, 984, 10.1016/j.ijheatmasstransfer.2018.11.116
Chen, 2018, Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement, Energy, 145, 603, 10.1016/j.energy.2017.12.110
Panchal, 2019, Heat and mass transfer modeling and investigation of multiple LiFePO4/graphite batteries in a pack at low C-rates with water-cooling, Int. J. Heat Mass Transf., 135, 368, 10.1016/j.ijheatmasstransfer.2019.01.076
Panchal, 2016, Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery, Int. J. Heat Mass Transf., 101, 1093, 10.1016/j.ijheatmasstransfer.2016.05.126
Panchal, 2017, Uneven temperature and voltage distributions due to rapid discharge rates and different boundary conditions for series-connected LiFePO4 batteries, Int. Commun. Heat Mass Transf., 81, 210, 10.1016/j.icheatmasstransfer.2016.12.026
Panchal, 2016, Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions, Int. Commun. Heat Mass Transf., 71, 35, 10.1016/j.icheatmasstransfer.2015.12.004
Jin, 2014, Ultra-thin minichannel LCP for EV battery thermal management, Appl. Energy, 113, 1786, 10.1016/j.apenergy.2013.07.013
Javani, 2014, Modeling of passive thermal management for electric vehicle battery packs with PCM between cells, Appl. Therm. Eng., 73, 307, 10.1016/j.applthermaleng.2014.07.037
Yang, 2017, The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage, Appl. Energy, 194, 508, 10.1016/j.apenergy.2016.09.050
Qu, 2019, Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application, Int. J. Heat Mass Transf., 129, 773, 10.1016/j.ijheatmasstransfer.2018.10.019
Ling, 2015, A hybrid thermal management system for lithium-ion batteries combining phase change materials with forced-air cooling, Appl. Energy, 148, 403, 10.1016/j.apenergy.2015.03.080
Sabbah, 2008, Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution, J. Power Sources, 182, 630, 10.1016/j.jpowsour.2008.03.082
Wang, 2015, Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model, Appl. Therm. Eng., 90, 521, 10.1016/j.applthermaleng.2015.07.033
Moffat, 1988, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci., 1, 3, 10.1016/0894-1777(88)90043-X
C.G. Motloch, J.P. Christopheresen, J.R. Belt, R.B. Wright, G.L. Hunt, R.A. Sutula, T. Duong, T.J. Tartamella, H.J. Haskins, T.J. Miller, High-power battery testing procedures and analytical methodologies for HEV’s SAE Technical Paper 2002-01-1950, 2002.
Lu, 2019, A comprehensive study on temperature-dependent performance of lithium-ion battery, Appl. Therm. Eng., 158, 10.1016/j.applthermaleng.2019.113800
Watanabe, 2014, J. Power Source, 260, 50, 10.1016/j.jpowsour.2014.02.103
Striebel, 2004, Diagnostic analysis of electrodes from high-power lithium-ion cells cycled under different conditions, J. Electrochem. Soc., 151, A857, 10.1149/1.1710514