Evaluating the characteristics of multiwall carbon nanotubes

Carbon - Tập 49 - Trang 2581-2602 - 2011
John H. Lehman1, Mauricio Terrones2,3,4, Elisabeth Mansfield5, Katherine E. Hurst6, Vincent Meunier7
1Optoelectronics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
2Research Center for Exotic Nanocarbons (JST), Shinshu University, Wakasato 4-17-1, Nagano City 380-8553, Japan
3Department of Physics, The Pennsylvania State University, 104 Davey Lab., University Park, PA 16802-6300, USA
4Department of Materials Science and Engineering & Materials Research Institute, The Pennsylvania State University, 104 Davey Lab., University Park, PA 16802-6300, USA
5Materials Reliability Division, Materials Measurement Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
6National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305, USA
7Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180-3590, USA

Tài liệu tham khảo

Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Oberlin, 1976, Filamentous growth of carbon through benzene decomposition, J Cryst Growth, 32, 335, 10.1016/0022-0248(76)90115-9 Eklund P, Ajayan P, Blackmon R, Hart AJ, Kong J, Pradhan B, et al. WTEC International Assessment of Research and Development of Carbon Nanotube Manufacturing and Applications. Technical Report. World Technology Evaluation Center Inc.; 2007. Ma-Hock, 2009, Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months, Toxicol Sci, 112, 468, 10.1093/toxsci/kfp146 Hui, 2005, Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet, Phys Rev B Condens Matter Mater Phys, 72, 85415-1 Kaatz, 2006, Thermodynamic model for growth mechanisms of multiwall carbon nanotubes, Appl Phys Lett, 89, 241915-1, 10.1063/1.2405847 Govindjee, 1999, On the use of continuum mechanics to estimate the properties of nanotubes, Solid State Commun, 110, 227, 10.1016/S0038-1098(98)00626-7 Shenderova, 2002, Carbon nanostructures, Crit Rev Solid State Mater Sci, 27, 227, 10.1080/10408430208500497 Murr, 2006, Carbon nanotubes in wood soot, Atmos Sci Lett, 7, 93, 10.1002/asl.138 Bang, 2004, Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams, J Nanosci Nanotechnol, 4, 716, 10.1166/jnn.2004.095 Dillon, 1999, A simple and complete purification of single-walled carbon nanotube materials, Adv Mater, 11, 1354, 10.1002/(SICI)1521-4095(199911)11:16<1354::AID-ADMA1354>3.0.CO;2-N Krause, 2009, Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers, Carbon, 47, 602, 10.1016/j.carbon.2008.10.040 Lerche, 2007, Consolidation of concentrated dispersions of nano- and microparticles determined by analytical centrifugation, Powder Technol, 174, 46, 10.1016/j.powtec.2006.10.020 Yu, 2007, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon, 45, 618, 10.1016/j.carbon.2006.10.010 Grossiord, 2005, Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV–visible spectroscopy, Anal Chem, 77, 5135, 10.1021/ac050358j Osswald, 2007, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy, J Raman Spectrosc, 38, 728, 10.1002/jrs.1686 Mansfield, 2010, Applications of TGA in quality control of SWCNTs, Anal Bioanal Chem, 396, 1071, 10.1007/s00216-009-3319-2 Hurst, 2010, Quartz–crystal microbalance for in situ monitoring of laser cleaning of carbon nanotubes, Carbon, 48, 2521, 10.1016/j.carbon.2010.03.028 Caplovicova, 2007, An alternative approach to carbon nanotube sample preparation for TEM investigation, Ultramicroscopy, 107, 692, 10.1016/j.ultramic.2007.01.005 Endo, 1997, Stacking nature of graphene layers in carbon nanotubes and nanofibres, J Phys Chem Solids, 58, 1707, 10.1016/S0022-3697(97)00055-3 Banhart, 2001, Metal atoms in carbon nanotubes and related nanoparticles, Int J Mod Phys B Condens Matter Phys Stat Phys Appl Phys, 15, 4037 Endo, 2006, Large-scale production of carbon nanotubes and their applications, Pure Appl Chem, 78, 1703, 10.1351/pac200678091703 Kamaras, 2008, Wide-range optical spectra of carbon nanotubes: a comparative study, Phys Status Solidi B, 245, 328, 10.1002/pssb.200879647 Theocharous, 2008, Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating, Appl Opt, 47, 3999, 10.1364/AO.47.003999 Lin, 2000, Optical properties of well-aligned multiwalled carbon nanotube bundles, Phys Rev B Condens Matter, 61, 14114, 10.1103/PhysRevB.61.14114 Saito, 1993, Electronic structure of double-layer graphene tubules, J Appl Phys, 73, 494, 10.1063/1.353358 Brennan, 2003, Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes, Opt Lett, 28, 266, 10.1364/OL.28.000266 Musso, 2007, Modification of MWNTs obtained by thermal-CVD, Diamond Relat Mater, 16, 1183, 10.1016/j.diamond.2006.11.087 Misra, 2007, FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping, J Nanosci Nanotechnol, 7, 1820, 10.1166/jnn.2007.723 Kouklin, 2004, Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition, Appl Phys Lett, 85, 4463, 10.1063/1.1812837 Garcia-Vidal, 1997, Effective medium theory of the optical properties of aligned carbon nanotubes, Phys Rev Lett, 78, 4289, 10.1103/PhysRevLett.78.4289 Yang, 2008, Experimental observation of an extremely dark material made by a low-density nanotube array, Nano Lett, 8, 446, 10.1021/nl072369t Mizuno, 2009, A black body absorber from vertically aligned single-walled carbon nanotubes, Proc Natl Acad Sci USA, 106, 6044, 10.1073/pnas.0900155106 Lehman, 2007, Multiwall carbon nanotube absorber on a thin-film lithium niobate pyroelectric detector, Opt Lett, 32, 772, 10.1364/OL.32.000772 Jorio, 2003, Characterizing carbon nanotube samples with resonance Raman scattering, New J Phys, 5, 139.1, 10.1088/1367-2630/5/1/139 Rao, 1997, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, 275, 187, 10.1126/science.275.5297.187 Maultzsch, 2001, Chirality-selective Raman scattering of the D mode in carbon nanotubes, Phys Rev B, 64, 121407-1, 10.1103/PhysRevB.64.121407 Jantoljak, 1998, Low-energy Raman-active phonons of multiwalled carbon nanotubes, Appl Phys A Mater Sci Process, 67, 113, 10.1007/s003390050746 Zhao, 2002, Radial breathing modes of multiwalled carbon nanotubes, Chem Phys Lett, 361, 169, 10.1016/S0009-2614(02)00955-7 Zhao, 2002, Characteristic Raman spectra of multiwalled carbon nanotubes, Physica B, 323, 265, 10.1016/S0921-4526(02)00986-9 Zhao, 2004, Smallest carbon nanotube is 3 angstrom in diameter, Phys Rev Lett, 92, 1255021-1, 10.1103/PhysRevLett.92.125502 Benoit, 2002, Low-frequency Raman studies of multiwalled carbon nanotubes: experiments and theory, Phys Rev B, 66, 073417-1, 10.1103/PhysRevB.66.073417 Buisson, 2003, Interpretation of the low-frequency raman modes in multiwalled carbon nanotubes. MOLECULAR NANOSTRUCTURES: XVII international winterschool euroconference on electronic properties of novel materials, AIP Conf Proc, 685, 452, 10.1063/1.1628070 Lefrant, 2002, Raman and SERS studies of carbon nanotube systems, Curr Appl Phys, 2, 479, 10.1016/S1567-1739(02)00161-X Benoit, 2002, Low-frequency Raman studies of multiwalled carbon nanotubes: experiments and theory, Phys Rev B Condens Matter Mater Phys, 66, 073417/1, 10.1103/PhysRevB.66.073417 Donato, 2007, Aid of Raman spectroscopy in diagnostics of MWCNT synthesised by Fe-catalysed CVD, J Phys Conf Ser, 61, 931, 10.1088/1742-6596/61/1/185 Santangelo, 2006, Low-frequency Raman study of hollow multiwalled nanotubes grown by Fe-catalyzed chemical vapor deposition, J Appl Phys, 100, 104311-1, 10.1063/1.2386951 Zhao, 2002, Multiple splitting of G-band modes from individual multiwalled carbon nanotubes, Appl Phys Lett, 81, 2550, 10.1063/1.1502196 Nanot, 2010, Doping dependence of the G-band Raman spectra of an individual multiwall carbon nanotube, Physica E Low-Dimension Syst Nanostruct, 42, 2466, 10.1016/j.physe.2010.06.006 Gohil, 2010, Surface enhanced Raman scattering from multiwalled carbon nanotubes at low temperatures, Appl Phys Lett, 96, 143108-1, 10.1063/1.3374862 DiLeo, 2007, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, J Appl Phys, 101, 064301-1, 10.1063/1.2712152 Souza, 2007, Selective tuning of the electronic properties of coaxial nanocables through exohedral doping, Nano Lett, 7, 2383, 10.1021/nl0710351 Endo, 2006, Nanotube coalescence-inducing mode: a novel vibrational mode in carbon systems, Small, 2, 1031, 10.1002/smll.200600087 Fantini, 2006, Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes, Phys Rev B, 73, 193408-1, 10.1103/PhysRevB.73.193408 DiLeo, 2007, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, J Appl Phys, 101, 64307-1, 10.1063/1.2712152 Chakrapani, 2003, Spectral fingerprinting of structural defects in plasma-treated carbon nanotubes, J Mater Res, 18, 2515, 10.1557/JMR.2003.0350 Ramadurai, 2009, Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance, J Appl Phys, 105, 093106, 10.1063/1.3116165 Saito, 2001, Probing phonon dispersion relations of graphite by double resonance Raman scattering, Phys Rev Lett, 88, 027401-1, 10.1103/PhysRevLett.88.027401 Osswald, 2005, Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chem Phys Lett, 402, 422, 10.1016/j.cplett.2004.12.066 Bose, 2005, Theory of the tangential G-band feature in the Raman spectra of metallic carbon nanotubes, Phys Rev B, 72, 153402-1, 10.1103/PhysRevB.72.153402 Jinno, 2006, Raman scattering study for heat-treated carbon nanotubes: the origin of ap 1855cm−1 Raman band, Chem Phys Lett, 418, 109, 10.1016/j.cplett.2005.10.089 Kim, 2007, Dependence of Raman spectra G′ band intensity on metallicity of single-wall carbon nanotubes, Phys Rev B, 76, 205426-1, 10.1103/PhysRevB.76.205426 Brunauer, 1938, Adsorption of gases in multimolecular layers, J Am Chem Soc, 60, 309, 10.1021/ja01269a023 Do, 1998 Rouquerol, 1999 Peigney, 2001, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 39, 507, 10.1016/S0008-6223(00)00155-X Lucio, 2009, KOH activated carbon multiwall carbon nanotubes, Carbon Sci Technol, 3, 120 Frackowiak, 2002, Enhanced capacitance of carbon nanotubes through chemical activation, Chem Phys Lett, 361, 35, 10.1016/S0009-2614(02)00684-X Raymundo-Pinero, 2002, High surface area carbon nanotubes prepared by chemical activation, Carbon, 40, 1614, 10.1016/S0008-6223(02)00134-3 Raymundo-Pinero, 2005, KOH and NaoH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon, 43, 786, 10.1016/j.carbon.2004.11.005 Jurewicz, 2006, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation, Carbon, 44, 2368, 10.1016/j.carbon.2006.05.044 Tsang, 1993, Thinning and opening of carbon nanotubes by oxidation using carbon dioxide, Nature, 362, 520, 10.1038/362520a0 Li, 2004, Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification, J Colloid Interface Sci, 277, 35, 10.1016/j.jcis.2004.05.024 Kim, 2009, Density measurement of size selected multiwalled carbon by mobility-mass characterization, Carbon, 47, 1297, 10.1016/j.carbon.2009.01.011 Available from: www.nanothinkx.com. Available from: www.swentnano.com. Goldstein, 2003 Pang, 1993, Thermogravimetric analysis of carbon nanotubes and nanoparticles, J Phys Chem, 97, 6941, 10.1021/j100129a001 Lima, 2009, Purity evaluation and influence of carbon nanotube on carbon nanotube/graphite thermal stability, J Therm Anal Calorim, 97, 257, 10.1007/s10973-009-0245-7 Dunens, 2009, Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts, Environ Sci Technol, 43, 7889, 10.1021/es901779c Scheibe, 2010, Oxidation and reduction of multiwalled carbon nanotubes – preparation and characterization, Mater Charact, 61, 185, 10.1016/j.matchar.2009.11.008 Kowalska, 2006, Influence of high vacuum annealing treatment on some properties of carbon nanotubes, J Therm Anal Calorim, 86, 115, 10.1007/s10973-006-7585-3 Huang, 2003, 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing, Carbon, 41, 2585, 10.1016/S0008-6223(03)00330-0 Lin, 2010, Microwave makes carbon nanotubes less defective, ACS Nano, 4, 1716, 10.1021/nn901621c Born, 2002, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry, Nano Lett, 2, 615, 10.1021/nl020297u Feng, 2008, Room temperature purification of few-walled carbon nanotubes with high yield, ACS Nano, 2, 1634, 10.1021/nn800388g Trigueiro, 2007, Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods, J Nanosci Nanotechnol, 7, 3477, 10.1166/jnn.2007.831 Peng, 2009, Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media, Appl Phys A Mater Sci Process, 97, 771, 10.1007/s00339-009-5314-z Kim, 2005, Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition, Chem Phys Lett, 413, 135, 10.1016/j.cplett.2005.07.064 Don-Young, 2009, Preparation of aspect ratio-controlled carbon nanotubes, Mol Cryst Liq Cryst, 510, 79 Santangelo, 2010, Calibration of reaction parameters for the improvement of thermal stability and crystalline quality of multiwalled carbon nanotubes, J Mater Sci, 45, 783, 10.1007/s10853-009-4001-y Moodley, 2009, Is there a correlation between catalyst particle size and CNT diameter?, Carbon, 47, 2002, 10.1016/j.carbon.2009.03.046 Ding, 2006, Graphitic encapsulation of catalyst particles in carbon nanotube production, J Phys Chem B, 110, 7666, 10.1021/jp055485y McKee, 2006, Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes, J Phys Chem B, 110, 1179, 10.1021/jp054265h Li, 2008, Thermogravimetric analysis and TEM characterization of the oxidation and defect sites of carbon nanotubes synthesized by CVD of methane, Mater Sci Eng A, 473, 355, 10.1016/j.msea.2007.04.003 McKee, 2009, Dimensional control of multi-walled carbon nanotubes in floating-catalyst CVD synthesis, Carbon, 47, 2085, 10.1016/j.carbon.2009.03.060 Zhang, 2007, The thermal properties of controllable diameter carbon nanotubes synthesized by using AB5 alloy of micrometer magnitude as catalyst, Mater Sci Eng A, 464, 17, 10.1016/j.msea.2006.12.082 Ajayan, 1993, Opening carbon nanotubes with oxygen and implications for filling, Nature, 362, 522, 10.1038/362522a0 Yao, 1998, Structure and oxidation patterns of carbon nanotubes, J Mater Res, 13, 2432, 10.1557/JMR.1998.0338 McKee, 2008, Length and the oxidation kinetics of chemical-vapor-deposition-generated multiwalled carbon nanotubes, J Phys Chem C, 112, 10108, 10.1021/jp800593r Terrones, 2003, The carbon nanocosmos: novel materials for the XXI century, Philos Trans R Soc A, 361, 2789, 10.1098/rsta.2003.1262 Krishnan, 1997, Graphitic cones and the nucleation of curved carbon surfaces, Nature, 388, 451, 10.1038/41284 Iijima, 1992, Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, 356, 776, 10.1038/356776a0 Lau, 2006, Coiled carbon nanotubes: synthesis and their potential applications in advanced composite structures, Composites Part B, 37, 437, 10.1016/j.compositesb.2006.02.008 Bandaru, 2007, A plausible mechanism for the evolution of helical forms in nanostructure growth, J Appl Phys, 101, 094307-1, 10.1063/1.2723189 Martel, 1999, Rings of single-walled carbon nanotubes, Nature, 398, 299, 10.1038/18589 Thrower, 1969, The study of defects in graphite by transmission electron spectroscopy, Chem Phys Carbon, 5, 217 Stone, 1986, Theoretical studies of icosahedral C60 and some related species, Chem Phys Lett, 128, 501, 10.1016/0009-2614(86)80661-3 Terrones, 2002, Structure, chirality, and formation of giant icosahedral fullerenes and spherical graphitic onions, Struct Chem, 13, 373, 10.1023/A:1015880427362 Girit, 2009, Graphene at the edge: stability and dynamics, Science, 323, 1705, 10.1126/science.1166999 Terrones, 2004, New direction in nanotube science, Mater Today, 7, 30, 10.1016/S1369-7021(04)00447-X Cruz-Silva, 2008, Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus–nitrogen doped multiwalled carbon nanotubes, ACS Nano, 2, 441, 10.1021/nn700330w Maciel, 2009, Synthesis, electronic structure, and raman scattering of phosphorus-doped single-wall carbon nanotubes, Nano Lett, 9, 2267, 10.1021/nl9004207 Maciel, 2008, Electron and phonon renormalization near charged defects in carbon nanotubes, Nat Mater, 7, 878, 10.1038/nmat2296 Romo-Herrera, 2009, The role of sulfur in the synthesis of novel carbon morphologies: from covalent Y-junctions to sea-urchin-like structures, Adv Funct Mater, 19, 1193, 10.1002/adfm.200800931 Hashimoto, 2004, Direct evidence for atomic defects in graphene layers, Nature, 430, 870, 10.1038/nature02817 Jia, 2009, Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons, Science, 323, 1701, 10.1126/science.1166862