Evaluating the characteristics of multiwall carbon nanotubes
Tài liệu tham khảo
Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0
Oberlin, 1976, Filamentous growth of carbon through benzene decomposition, J Cryst Growth, 32, 335, 10.1016/0022-0248(76)90115-9
Eklund P, Ajayan P, Blackmon R, Hart AJ, Kong J, Pradhan B, et al. WTEC International Assessment of Research and Development of Carbon Nanotube Manufacturing and Applications. Technical Report. World Technology Evaluation Center Inc.; 2007.
Ma-Hock, 2009, Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months, Toxicol Sci, 112, 468, 10.1093/toxsci/kfp146
Hui, 2005, Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet, Phys Rev B Condens Matter Mater Phys, 72, 85415-1
Kaatz, 2006, Thermodynamic model for growth mechanisms of multiwall carbon nanotubes, Appl Phys Lett, 89, 241915-1, 10.1063/1.2405847
Govindjee, 1999, On the use of continuum mechanics to estimate the properties of nanotubes, Solid State Commun, 110, 227, 10.1016/S0038-1098(98)00626-7
Shenderova, 2002, Carbon nanostructures, Crit Rev Solid State Mater Sci, 27, 227, 10.1080/10408430208500497
Murr, 2006, Carbon nanotubes in wood soot, Atmos Sci Lett, 7, 93, 10.1002/asl.138
Bang, 2004, Carbon nanotubes and other fullerene nanocrystals in domestic propane and natural gas combustion streams, J Nanosci Nanotechnol, 4, 716, 10.1166/jnn.2004.095
Dillon, 1999, A simple and complete purification of single-walled carbon nanotube materials, Adv Mater, 11, 1354, 10.1002/(SICI)1521-4095(199911)11:16<1354::AID-ADMA1354>3.0.CO;2-N
Krause, 2009, Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers, Carbon, 47, 602, 10.1016/j.carbon.2008.10.040
Lerche, 2007, Consolidation of concentrated dispersions of nano- and microparticles determined by analytical centrifugation, Powder Technol, 174, 46, 10.1016/j.powtec.2006.10.020
Yu, 2007, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon, 45, 618, 10.1016/j.carbon.2006.10.010
Grossiord, 2005, Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV–visible spectroscopy, Anal Chem, 77, 5135, 10.1021/ac050358j
Osswald, 2007, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy, J Raman Spectrosc, 38, 728, 10.1002/jrs.1686
Mansfield, 2010, Applications of TGA in quality control of SWCNTs, Anal Bioanal Chem, 396, 1071, 10.1007/s00216-009-3319-2
Hurst, 2010, Quartz–crystal microbalance for in situ monitoring of laser cleaning of carbon nanotubes, Carbon, 48, 2521, 10.1016/j.carbon.2010.03.028
Caplovicova, 2007, An alternative approach to carbon nanotube sample preparation for TEM investigation, Ultramicroscopy, 107, 692, 10.1016/j.ultramic.2007.01.005
Endo, 1997, Stacking nature of graphene layers in carbon nanotubes and nanofibres, J Phys Chem Solids, 58, 1707, 10.1016/S0022-3697(97)00055-3
Banhart, 2001, Metal atoms in carbon nanotubes and related nanoparticles, Int J Mod Phys B Condens Matter Phys Stat Phys Appl Phys, 15, 4037
Endo, 2006, Large-scale production of carbon nanotubes and their applications, Pure Appl Chem, 78, 1703, 10.1351/pac200678091703
Kamaras, 2008, Wide-range optical spectra of carbon nanotubes: a comparative study, Phys Status Solidi B, 245, 328, 10.1002/pssb.200879647
Theocharous, 2008, Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating, Appl Opt, 47, 3999, 10.1364/AO.47.003999
Lin, 2000, Optical properties of well-aligned multiwalled carbon nanotube bundles, Phys Rev B Condens Matter, 61, 14114, 10.1103/PhysRevB.61.14114
Saito, 1993, Electronic structure of double-layer graphene tubules, J Appl Phys, 73, 494, 10.1063/1.353358
Brennan, 2003, Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes, Opt Lett, 28, 266, 10.1364/OL.28.000266
Musso, 2007, Modification of MWNTs obtained by thermal-CVD, Diamond Relat Mater, 16, 1183, 10.1016/j.diamond.2006.11.087
Misra, 2007, FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping, J Nanosci Nanotechnol, 7, 1820, 10.1166/jnn.2007.723
Kouklin, 2004, Infrared absorption properties of carbon nanotubes synthesized by chemical vapor deposition, Appl Phys Lett, 85, 4463, 10.1063/1.1812837
Garcia-Vidal, 1997, Effective medium theory of the optical properties of aligned carbon nanotubes, Phys Rev Lett, 78, 4289, 10.1103/PhysRevLett.78.4289
Yang, 2008, Experimental observation of an extremely dark material made by a low-density nanotube array, Nano Lett, 8, 446, 10.1021/nl072369t
Mizuno, 2009, A black body absorber from vertically aligned single-walled carbon nanotubes, Proc Natl Acad Sci USA, 106, 6044, 10.1073/pnas.0900155106
Lehman, 2007, Multiwall carbon nanotube absorber on a thin-film lithium niobate pyroelectric detector, Opt Lett, 32, 772, 10.1364/OL.32.000772
Jorio, 2003, Characterizing carbon nanotube samples with resonance Raman scattering, New J Phys, 5, 139.1, 10.1088/1367-2630/5/1/139
Rao, 1997, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, 275, 187, 10.1126/science.275.5297.187
Maultzsch, 2001, Chirality-selective Raman scattering of the D mode in carbon nanotubes, Phys Rev B, 64, 121407-1, 10.1103/PhysRevB.64.121407
Jantoljak, 1998, Low-energy Raman-active phonons of multiwalled carbon nanotubes, Appl Phys A Mater Sci Process, 67, 113, 10.1007/s003390050746
Zhao, 2002, Radial breathing modes of multiwalled carbon nanotubes, Chem Phys Lett, 361, 169, 10.1016/S0009-2614(02)00955-7
Zhao, 2002, Characteristic Raman spectra of multiwalled carbon nanotubes, Physica B, 323, 265, 10.1016/S0921-4526(02)00986-9
Zhao, 2004, Smallest carbon nanotube is 3 angstrom in diameter, Phys Rev Lett, 92, 1255021-1, 10.1103/PhysRevLett.92.125502
Benoit, 2002, Low-frequency Raman studies of multiwalled carbon nanotubes: experiments and theory, Phys Rev B, 66, 073417-1, 10.1103/PhysRevB.66.073417
Buisson, 2003, Interpretation of the low-frequency raman modes in multiwalled carbon nanotubes. MOLECULAR NANOSTRUCTURES: XVII international winterschool euroconference on electronic properties of novel materials, AIP Conf Proc, 685, 452, 10.1063/1.1628070
Lefrant, 2002, Raman and SERS studies of carbon nanotube systems, Curr Appl Phys, 2, 479, 10.1016/S1567-1739(02)00161-X
Benoit, 2002, Low-frequency Raman studies of multiwalled carbon nanotubes: experiments and theory, Phys Rev B Condens Matter Mater Phys, 66, 073417/1, 10.1103/PhysRevB.66.073417
Donato, 2007, Aid of Raman spectroscopy in diagnostics of MWCNT synthesised by Fe-catalysed CVD, J Phys Conf Ser, 61, 931, 10.1088/1742-6596/61/1/185
Santangelo, 2006, Low-frequency Raman study of hollow multiwalled nanotubes grown by Fe-catalyzed chemical vapor deposition, J Appl Phys, 100, 104311-1, 10.1063/1.2386951
Zhao, 2002, Multiple splitting of G-band modes from individual multiwalled carbon nanotubes, Appl Phys Lett, 81, 2550, 10.1063/1.1502196
Nanot, 2010, Doping dependence of the G-band Raman spectra of an individual multiwall carbon nanotube, Physica E Low-Dimension Syst Nanostruct, 42, 2466, 10.1016/j.physe.2010.06.006
Gohil, 2010, Surface enhanced Raman scattering from multiwalled carbon nanotubes at low temperatures, Appl Phys Lett, 96, 143108-1, 10.1063/1.3374862
DiLeo, 2007, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, J Appl Phys, 101, 064301-1, 10.1063/1.2712152
Souza, 2007, Selective tuning of the electronic properties of coaxial nanocables through exohedral doping, Nano Lett, 7, 2383, 10.1021/nl0710351
Endo, 2006, Nanotube coalescence-inducing mode: a novel vibrational mode in carbon systems, Small, 2, 1031, 10.1002/smll.200600087
Fantini, 2006, Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes, Phys Rev B, 73, 193408-1, 10.1103/PhysRevB.73.193408
DiLeo, 2007, Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy, J Appl Phys, 101, 64307-1, 10.1063/1.2712152
Chakrapani, 2003, Spectral fingerprinting of structural defects in plasma-treated carbon nanotubes, J Mater Res, 18, 2515, 10.1557/JMR.2003.0350
Ramadurai, 2009, Raman and electron microscopy analysis of carbon nanotubes exposed to high power laser irradiance, J Appl Phys, 105, 093106, 10.1063/1.3116165
Saito, 2001, Probing phonon dispersion relations of graphite by double resonance Raman scattering, Phys Rev Lett, 88, 027401-1, 10.1103/PhysRevLett.88.027401
Osswald, 2005, Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation, Chem Phys Lett, 402, 422, 10.1016/j.cplett.2004.12.066
Bose, 2005, Theory of the tangential G-band feature in the Raman spectra of metallic carbon nanotubes, Phys Rev B, 72, 153402-1, 10.1103/PhysRevB.72.153402
Jinno, 2006, Raman scattering study for heat-treated carbon nanotubes: the origin of ap 1855cm−1 Raman band, Chem Phys Lett, 418, 109, 10.1016/j.cplett.2005.10.089
Kim, 2007, Dependence of Raman spectra G′ band intensity on metallicity of single-wall carbon nanotubes, Phys Rev B, 76, 205426-1, 10.1103/PhysRevB.76.205426
Brunauer, 1938, Adsorption of gases in multimolecular layers, J Am Chem Soc, 60, 309, 10.1021/ja01269a023
Do, 1998
Rouquerol, 1999
Peigney, 2001, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 39, 507, 10.1016/S0008-6223(00)00155-X
Lucio, 2009, KOH activated carbon multiwall carbon nanotubes, Carbon Sci Technol, 3, 120
Frackowiak, 2002, Enhanced capacitance of carbon nanotubes through chemical activation, Chem Phys Lett, 361, 35, 10.1016/S0009-2614(02)00684-X
Raymundo-Pinero, 2002, High surface area carbon nanotubes prepared by chemical activation, Carbon, 40, 1614, 10.1016/S0008-6223(02)00134-3
Raymundo-Pinero, 2005, KOH and NaoH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon, 43, 786, 10.1016/j.carbon.2004.11.005
Jurewicz, 2006, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation, Carbon, 44, 2368, 10.1016/j.carbon.2006.05.044
Tsang, 1993, Thinning and opening of carbon nanotubes by oxidation using carbon dioxide, Nature, 362, 520, 10.1038/362520a0
Li, 2004, Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification, J Colloid Interface Sci, 277, 35, 10.1016/j.jcis.2004.05.024
Kim, 2009, Density measurement of size selected multiwalled carbon by mobility-mass characterization, Carbon, 47, 1297, 10.1016/j.carbon.2009.01.011
Available from: www.nanothinkx.com.
Available from: www.swentnano.com.
Goldstein, 2003
Pang, 1993, Thermogravimetric analysis of carbon nanotubes and nanoparticles, J Phys Chem, 97, 6941, 10.1021/j100129a001
Lima, 2009, Purity evaluation and influence of carbon nanotube on carbon nanotube/graphite thermal stability, J Therm Anal Calorim, 97, 257, 10.1007/s10973-009-0245-7
Dunens, 2009, Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts, Environ Sci Technol, 43, 7889, 10.1021/es901779c
Scheibe, 2010, Oxidation and reduction of multiwalled carbon nanotubes – preparation and characterization, Mater Charact, 61, 185, 10.1016/j.matchar.2009.11.008
Kowalska, 2006, Influence of high vacuum annealing treatment on some properties of carbon nanotubes, J Therm Anal Calorim, 86, 115, 10.1007/s10973-006-7585-3
Huang, 2003, 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing, Carbon, 41, 2585, 10.1016/S0008-6223(03)00330-0
Lin, 2010, Microwave makes carbon nanotubes less defective, ACS Nano, 4, 1716, 10.1021/nn901621c
Born, 2002, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry, Nano Lett, 2, 615, 10.1021/nl020297u
Feng, 2008, Room temperature purification of few-walled carbon nanotubes with high yield, ACS Nano, 2, 1634, 10.1021/nn800388g
Trigueiro, 2007, Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods, J Nanosci Nanotechnol, 7, 3477, 10.1166/jnn.2007.831
Peng, 2009, Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media, Appl Phys A Mater Sci Process, 97, 771, 10.1007/s00339-009-5314-z
Kim, 2005, Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition, Chem Phys Lett, 413, 135, 10.1016/j.cplett.2005.07.064
Don-Young, 2009, Preparation of aspect ratio-controlled carbon nanotubes, Mol Cryst Liq Cryst, 510, 79
Santangelo, 2010, Calibration of reaction parameters for the improvement of thermal stability and crystalline quality of multiwalled carbon nanotubes, J Mater Sci, 45, 783, 10.1007/s10853-009-4001-y
Moodley, 2009, Is there a correlation between catalyst particle size and CNT diameter?, Carbon, 47, 2002, 10.1016/j.carbon.2009.03.046
Ding, 2006, Graphitic encapsulation of catalyst particles in carbon nanotube production, J Phys Chem B, 110, 7666, 10.1021/jp055485y
McKee, 2006, Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes, J Phys Chem B, 110, 1179, 10.1021/jp054265h
Li, 2008, Thermogravimetric analysis and TEM characterization of the oxidation and defect sites of carbon nanotubes synthesized by CVD of methane, Mater Sci Eng A, 473, 355, 10.1016/j.msea.2007.04.003
McKee, 2009, Dimensional control of multi-walled carbon nanotubes in floating-catalyst CVD synthesis, Carbon, 47, 2085, 10.1016/j.carbon.2009.03.060
Zhang, 2007, The thermal properties of controllable diameter carbon nanotubes synthesized by using AB5 alloy of micrometer magnitude as catalyst, Mater Sci Eng A, 464, 17, 10.1016/j.msea.2006.12.082
Ajayan, 1993, Opening carbon nanotubes with oxygen and implications for filling, Nature, 362, 522, 10.1038/362522a0
Yao, 1998, Structure and oxidation patterns of carbon nanotubes, J Mater Res, 13, 2432, 10.1557/JMR.1998.0338
McKee, 2008, Length and the oxidation kinetics of chemical-vapor-deposition-generated multiwalled carbon nanotubes, J Phys Chem C, 112, 10108, 10.1021/jp800593r
Terrones, 2003, The carbon nanocosmos: novel materials for the XXI century, Philos Trans R Soc A, 361, 2789, 10.1098/rsta.2003.1262
Krishnan, 1997, Graphitic cones and the nucleation of curved carbon surfaces, Nature, 388, 451, 10.1038/41284
Iijima, 1992, Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, 356, 776, 10.1038/356776a0
Lau, 2006, Coiled carbon nanotubes: synthesis and their potential applications in advanced composite structures, Composites Part B, 37, 437, 10.1016/j.compositesb.2006.02.008
Bandaru, 2007, A plausible mechanism for the evolution of helical forms in nanostructure growth, J Appl Phys, 101, 094307-1, 10.1063/1.2723189
Martel, 1999, Rings of single-walled carbon nanotubes, Nature, 398, 299, 10.1038/18589
Thrower, 1969, The study of defects in graphite by transmission electron spectroscopy, Chem Phys Carbon, 5, 217
Stone, 1986, Theoretical studies of icosahedral C60 and some related species, Chem Phys Lett, 128, 501, 10.1016/0009-2614(86)80661-3
Terrones, 2002, Structure, chirality, and formation of giant icosahedral fullerenes and spherical graphitic onions, Struct Chem, 13, 373, 10.1023/A:1015880427362
Girit, 2009, Graphene at the edge: stability and dynamics, Science, 323, 1705, 10.1126/science.1166999
Terrones, 2004, New direction in nanotube science, Mater Today, 7, 30, 10.1016/S1369-7021(04)00447-X
Cruz-Silva, 2008, Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus–nitrogen doped multiwalled carbon nanotubes, ACS Nano, 2, 441, 10.1021/nn700330w
Maciel, 2009, Synthesis, electronic structure, and raman scattering of phosphorus-doped single-wall carbon nanotubes, Nano Lett, 9, 2267, 10.1021/nl9004207
Maciel, 2008, Electron and phonon renormalization near charged defects in carbon nanotubes, Nat Mater, 7, 878, 10.1038/nmat2296
Romo-Herrera, 2009, The role of sulfur in the synthesis of novel carbon morphologies: from covalent Y-junctions to sea-urchin-like structures, Adv Funct Mater, 19, 1193, 10.1002/adfm.200800931
Hashimoto, 2004, Direct evidence for atomic defects in graphene layers, Nature, 430, 870, 10.1038/nature02817
Jia, 2009, Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons, Science, 323, 1701, 10.1126/science.1166862