When is scalar multiplication decidable?

Annals of Pure and Applied Logic - Tập 170 - Trang 1162-1175 - 2019
Philipp Hieronymi1
1Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, United States of America

Tài liệu tham khảo

Block Gorman Boigelot, 2005, An effective decision procedure for linear arithmetic over the integers and reals, ACM Trans. Comput. Log., 6, 614, 10.1145/1071596.1071601 Boigelot, 1998, On the expressiveness of real and integer arithmetic automata (extended abstract), 152 Büchi, 1962, On a decision method in restricted second order arithmetic, 1 Gödel, 1931, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsh. Math. Phys., 38, 173, 10.1007/BF01700692 Hieronymi, 2010, Defining the set of integers in expansions of the real field by a closed discrete set, Proc. Amer. Math. Soc., 138, 2163, 10.1090/S0002-9939-10-10268-8 Hieronymi, 2016, Expansions of the ordered additive group of real numbers by two discrete subgroups, J. Symbolic Logic, 81, 1007, 10.1017/jsl.2015.34 Hieronymi Hieronymi, 2014, Interpreting the projective hierarchy in expansions of the real line, Proc. Amer. Math. Soc., 142, 3259, 10.1090/S0002-9939-2014-12023-5 Miller, 2001, Expansions of dense linear orders with the intermediate value property, J. Symbolic Logic, 66, 1783, 10.2307/2694974 Ostrowski, 1922, Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Semin. Univ. Hambg., 1, 77, 10.1007/BF02940581 Robinson, 1949, Definability and decision problems in arithmetic, J. Symbolic Logic, 14, 98, 10.2307/2266510 Rockett, 1992 Skolem, 1931, Über einige Satzfunktionen in der Arithmetik, Skr. Norske Vidensk. Akad., Oslo, Math.-naturwiss. Kl., 7, 1 Smoryński, 1991, Logical Number Theory. I. An Introduction van den Dries, 1998, Dense pairs of o-minimal structures, Fund. Math., 157, 61, 10.4064/fm-157-1-61-78 Vardi, 2007, The Büchi complementation saga, vol. 4393, 12 Weispfenning, 1999, Mixed real-integer linear quantifier elimination, 129 Zeckendorf, 1972, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège, 41, 179