Multiplicity of cerebrospinal fluid functions: New challenges in health and disease
Tóm tắt
This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces.
1 Overview
2 CSF formation
2.1 Transcription factors
2.2 Ion transporters
2.3 Enzymes that modulate transport
2.4 Aquaporins or water channels
2.5 Receptors for neuropeptides
3 CSF pressure
3.1 Servomechanism regulatory hypothesis
3.2 Ontogeny of CSF pressure generation
3.3 Congenital hydrocephalus and periventricular regions
3.4 Brain response to elevated CSF pressure
3.5 Advances in measuring CSF waveforms
4 CSF flow
4.1 CSF flow and brain metabolism
4.2 Flow effects on fetal germinal matrix
4.3 Decreasing CSF flow in aging CNS
4.4 Refinement of non-invasive flow measurements
5 CSF volume
5.1 Hemodynamic factors
5.2 Hydrodynamic factors
5.3 Neuroendocrine factors
6 CSF turnover rate
6.1 Adverse effect of ventriculomegaly
6.2 Attenuated CSF sink action
7 CSF composition
7.1 Kidney-like action of CP-CSF system
7.2 Altered CSF biochemistry in aging and disease
7.3 Importance of clearance transport
7.4 Therapeutic manipulation of composition
8 CSF recycling in relation to ISF dynamics
8.1 CSF exchange with brain interstitium
8.2 Components of ISF movement in brain
8.3 Compromised ISF/CSF dynamics and amyloid retention
9 CSF reabsorption
9.1 Arachnoidal outflow resistance
9.2 Arachnoid villi vs. olfactory drainage routes
9.3 Fluid reabsorption along spinal nerves
9.4 Reabsorption across capillary aquaporin channels
10 Developing translationally effective models for restoring CSF balance
11 Conclusion
Tài liệu tham khảo
Johanson C: Choroid plexus-CSF circulatory dynamics: Impact on brain growth, metabolism and repair. Neuroscience in Medicine. Edited by: Conn P. 2008, Totowa, New Jersey: The Humana Press.
Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J: The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol. 2005, 71: 1-52.
Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, Rubenstein E, Possin K, Saul TA: The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer's type. Neurology. 2001, 57: 1763-1766.
Pliushcheva N, Shakhnovich A: CSF dynamics in patients with meningiomas. Acta Neurochir Suppl (Wien). 1994, 60: 174-175.
Levine S: Choroid plexus: target for systemic disease and pathway to the brain. Lab Invest. 1987, 56: 231-233.
Weaver C, McMillan P, Duncan JA, Stopa E, Johanson C: Hydrocephalus disorders: Their biophysical and neuroendocrine impact on the choroid plexus epithelium. Non-Neuronal Cells of the Nervous System: Function and Dysfunction. Edited by: Hertz L. 2004, Amsterdam: Elsevier Press, 31: 269-293.
Johanson C, McMillan P, Palm D, Stopa E, Doberstein C, Duncan JA: Volume transmission-mediated protective impact of choroid plexus-CSF growth factors on forebrain ischemic injury. Blood-Spinal Cord and Brain Barriers in Health and Disease. Edited by: Sharma H, Westman J. 2003, San Diego: Academic Press, 361-384.
Ennis SR, Keep RF: The effects of cerebral ischemia on the rat choroid plexus. J Cereb Blood Flow Metab. 2006, 26: 675-683.
Rubenstein E: Relationship of senescence of cerebrospinal fluid circulatory system to dementias of the aged. Lancet. 1998, 351: 283-285.
Emerich DF, Skinner SJ, Borlongan CV, Vasconcellos AV, Thanos CG: The choroid plexus in the rise, fall and repair of the brain. Bioessays. 2005, 27: 262-274.
Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF: Neuroprotection by encapsulated choroid plexus in a rodent model of Huntington's disease. Neuroreport. 2004, 15: 2521-2525.
Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF: Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke. 2004, 35: 2206-2210.
Watanabe Y, Matsumoto N, Dezawa M, Itokazu Y, Yoshihara T, Ide C: Conditioned medium of the primary culture of rat choroid plexus epithelial (modified ependymal) cells enhances neurite outgrowth and survival of hippocampal neurons. Neurosci Lett. 2005, 379: 158-163.
Kimura K, Matsumoto N, Kitada M, Mizoguchi A, Ide C: Neurite outgrowth from hippocampal neurons is promoted by choroid plexus ependymal cells in vitro. J Neurocytol. 2004, 33: 465-476.
Emerich DF, Thanos CG, Goddard M, Skinner SJ, Geany MS, Bell WJ, Bintz B, Schneider P, Chu Y, Babu RS, Borlongen CV, Boekelheide K, Hall S, Bryant B, Kordower JH: Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys. Neurobiol Dis. 2006, 23: 471-480.
Johanson CE, Duncan JA, Stopa EG, Baird A: Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res. 2005, 22: 1011-1037.
Smith DE, Johanson CE, Keep RF: Peptide and peptide analog transport systems at the blood-CSF barrier. Adv Drug Deliv Rev. 2004, 56: 1765-1791.
Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E: Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease. Cerebrospinal Fluid Res. 2004, 1: 3-
Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D: Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol. 2003, 2: 506-511.
Milhorat TH: Physiology of the cerebrospinal fluid. Cerebrospinal Fluid and the Brain Edemas. 1987, New York: Neuroscience Society of New York, 39-73.
Cserr HF: Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann N Y Acad Sci. 1988, 529: 9-20.
Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004, 45: 545-552.
Pollay M, Curl F: Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967, 213: 1031-1038.
Johanson CE: Arachnoid membrane, subarachnoid CSF and pia-glia. An Introduction to the Blood-Brain Barrier: Methodology and Biology. Edited by: Pardridge W. 1998, Cambridge, UK: Cambridge University Press, 259-269.
Pollay M, Stevens FA, Roberts PA: Alteration in choroid-plexus blood flow and cerebrospinal-fluid formation by increased ventricular pressure. Neurobiology of Cerebrospinal Fluid. Edited by: Wood JH. 1983, New York: Raven Press, 2: 687-695.
Rudick RA, Zirretta DK, Herndon RM: Clearance of albumin from mouse subarachnoid space: a measure of CSF bulk flow. J Neurosci Methods. 1982, 6: 253-259.
Johanson C: The choroid plexus. Encyclopedia for Neuroscience. Edited by: Adelman G. 1999, Boston: Birkhauser, 1: 384-387.
Poca MA, Sahuquillo J: Short-term medical management of hydrocephalus. Expert Opin Pharmacother. 2005, 6: 1525-1538.
Prandota J: Clinical pharmacology of furosemide in children: a supplement. Am J Ther. 2001, 8: 275-289.
Swetloff A, Ferretti P: Changes in E2F5 intracellular localization in mouse and human choroid plexus epithelium with development. Int J Dev Biol. 2005, 49: 859-865.
Lindeman G, Dagnino L, Gaubatz S, Xu Y, Bronson R, Warren H, Livingston D: A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev. 1998, 12: 1092-1098.
Lindvall M, Owman C: Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. J Cereb Blood Flow Metab. 1981, 1: 245-266.
Parandoosh Z, Johanson CE: Ontogeny of blood-brain barrier permeability to, and cerebrospinal fluid sink action on, [14C]urea. Am J Physiol. 1982, 243: R400-407.
Spector R, Johanson CE: The mammalian choroid plexus. Sci Am. 1989, 261: 68-74.
Shen H, Ocheltree SM, Hu Y, Keep RF, Smith DE: Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug Metab Dispos. 2007, 35: 1209-1216.
Murphy VA, Johanson CE: Acidosis, acetazolamide, and amiloride: effects on 22Na transfer across the blood-brain and blood-CSF barriers. J Neurochem. 1989, 52: 1058-1063.
Murphy VA, Johanson CE: Alteration of sodium transport by the choroid plexus with amiloride. Biochim Biophys Acta. 1989, 979: 187-192.
Murphy VA, Johanson CE: Na(+)-H(+) exchange in choroid plexus and CSF in acute metabolic acidosis or alkalosis. Am J Physiol. 1990, 258: F1528-1537.
Amlal H, Ledoussal C, Sheriff S, Shull GE, Soleimani M: Downregulation of renal AQP2 water channel and NKCC2 in mice lacking the apical Na+-H+ exchanger NHE3. J Physiol. 2003, 553: 511-522.
Praetorius J, Nejsum LN, Nielsen S: A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells. Am J Physiol Cell Physiol. 2004, 286: C601-610.
Boedtkjer E, Praetorius J, Fuchtbauer EM, Aalkjaer C: Antibody-independent localization of the electroneutral Na+-HCO3- cotransporter NBCn1 (slc4a7) in mice. Am J Physiol Cell Physiol. 2008, 294: C591-603.
Damkier HH, Nielsen S, Praetorius J: Molecular expression of SLC4-derived Na+-dependent anion transporters in selected human tissues. Am J Physiol Regul Integr Comp Physiol. 2007, 293: R2136-2146.
Johanson CE, Murphy VA: Acetazolamide and insulin alter choroid plexus epithelial cell [Na+], pH, and volume. Am J Physiol. 1990, 258: F1538-1546.
Maren TH: The kinetics of HCO3- synthesis related to fluid secretion, pH control, and CO2 elimination. Annu Rev Physiol. 1988, 50: 695-717.
Keep RF, Xiang J, Betz AL: Potassium cotransport at the rat choroid plexus. Am J Physiol. 1994, 267: C1616-1622.
Bairamian D, Johanson CE, Parmelee JT, Epstein MH: Potassium cotransport with sodium and chloride in the choroid plexus. J Neurochem. 1991, 56: 1623-1629.
Javaheri S, Wagner KR: Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. J Clin Invest. 1993, 92: 2257-2261.
Johanson CE, Jones HC, Stopa EG, Ayala C, Duncan JA, McMillan PN: Enhanced expression of the Na-K-2 Cl cotransporter at different regions of the blood-CSF barrier in the perinatal H-Tx rat. Eur J Pediatr Surg. 2002, 12 (Suppl 1): S47-49.
Pollay M, Hisey B, Reynolds E, Tomkins P, Stevens FA, Smith R: Choroid plexus Na+/K+-activated adenosine triphosphatase and cerebrospinal fluid formation. Neurosurgery. 1985, 17: 768-772.
Millar ID, Bruce J, Brown PD: Ion channel diversity, channel expression and function in the choroid plexuses. Cerebrospinal Fluid Res. 2007, 4: 8-
Smith QR, Johanson CE: Effect of ouabain and potassium on ion concentrations in the choroidal epithelium. Am J Physiol. 1980, 238: F399-406.
McAlear S, Bevensee M: pH regulation in non-neuronal brain cells and interstitial fluid. Non-Neuronal Cells of the Nervous System: Function and Dysfunction. Edited by: Hertz L. 2004, Amsterdam: Elsevier Press, 31: 707-745.
Johanson CE: Differential effects of acetazolamide, benzolamide and systemic acidosis on hydrogen and bicarbonate gradients across the apical and basolateral membranes of the choroid plexus. J Pharmacol Exp Ther. 1984, 231: 502-511.
Kalaria RN, Premkumar DR, Lin CW, Kroon SN, Bae JY, Sayre LM, LaManna JC: Identification and expression of the Na+/H+ exchanger in mammalian cerebrovascular and choroidal tissues: characterization by amiloride-sensitive [3H]MIA binding and RT-PCR analysis. Brain Res Mol Brain Res. 1998, 58: 178-187.
Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR: Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci USA. 1990, 87: 5278-5282.
Halmi P, Parkkila S, Honkaniemi J: Expression of carbonic anhydrases II, IV, VII, VIII and XII in rat brain after kainic acid induced status epilepticus. Neurochem Int. 2006, 48: 24-30.
Masseguin C, LePanse S, Corman B, Verbavatz JM, Gabrion J: Aging affects choroidal proteins involved in CSF production in Sprague-Dawley rats. Neurobiol Aging. 2005, 26: 917-927.
Mani-Ponset L, Masseguin C, Davet J, Herbute S, Maurel D, Ghandour MS, Reiss-Bubenheim D, Guell A, Gabrion J: Effects of an 11-day spaceflight on the choroid plexus of developing rats. Brain Res Dev Brain Res. 1997, 99: 187-200.
Maren TH, Conroy CW, Wynns GC, Godman DR: Renal and cerebrospinal fluid formation pharmacology of a high molecular weight carbonic anhydrase inhibitor. J Pharmacol Exp Ther. 1997, 280: 98-104.
Azzam NA, Choudhury SR, Donohue JM: Changes in the surface of fine structure of choroid plexus epithelium following chronic acetazolamide treatment. J Anat. 1978, 127: 333-342.
Ma B, Xiang Y, Mu SM, Li T, Yu HM, Li XJ: Effects of acetazolamide and anordiol on osmotic water permeability in AQP1-cRNA injected Xenopus oocyte. Acta Pharmacol Sin. 2004, 25: 90-97.
Xiang Y, Ma B, Li T, Gao JW, Yu HM, Li XJ: Acetazolamide inhibits aquaporin-1 protein expression and angiogenesis. Acta Pharmacol Sin. 2004, 25: 812-816.
Mu SM, Ji XH, Ma B, Yu HM, Li XJ: Differential protein analysis in rat renal proximal tubule epithelial cells in response to acetazolamide and its relation with the inhibition of AQP1. Yao Xue Xue Bao. 2003, 38: 169-172.
Yu HM, Sun BM, Bai Q, Koide SS, Li XJ: Influence of acetazolamide on AQP1 gene expression in testis and on sperm count/motility in epididymis of rats. Arch Androl. 2002, 48: 281-294.
Moon Y, Hong SJ, Shin D, Jung Y: Increased aquaporin-1 expression in choroid plexus epithelium after systemic hyponatremia. Neurosci Lett. 2006, 395: 1-6.
Masseguin C, Mani-Ponset L, Herbute S, Tixier-Vidal A, Gabrion J: Persistence of tight junctions and changes in apical structures and protein expression in choroid plexus epithelium of rats after short-term head-down tilt. J Neurocytol. 2001, 30: 365-377.
Speake T, Freeman LJ, Brown PD: Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta. 2003, 1609: 80-86.
Brown PD, Davies SL, Speake T, Millar ID: Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004, 129: 957-970.
Boassa D, Stamer WD, Yool AJ: Ion channel function of aquaporin-1 natively expressed in choroid plexus. J Neurosci. 2006, 26: 7811-7819.
Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Mollgard K, Potter A, Schuliga M, Saunders NR: Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res. 2005, 322: 353-364.
Gomori E, Pal J, Abraham H, Vajda Z, Sulyok E, Seress L, Doczi T: Fetal development of membrane water channel proteins aquaporin-1 and aquaporin-4 in the human brain. Int J Dev Neurosci. 2006, 24: 295-305.
Nielsen S, Smith BL, Christensen EI, Agre P: Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA. 1993, 90: 7275-7279.
Lehmann GL, Gradilone SA, Marinelli RA: Aquaporin water channels in central nervous system. Curr Neurovasc Res. 2004, 1: 293-303.
Wu Q, Delpire E, Hebert SC, Strange K: Functional demonstration of Na+-K+-2Cl- cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol. 1998, 275: C1565-1572.
Gunnarson E, Zelenina M, Aperia A: Regulation of brain aquaporins. Neuroscience. 2004, 129: 947-955.
Kim JG, Son YJ, Yun CH, Kim YI, Nam-Goong IS, Park JH, Park SK, Ojeda SR, D'Elia AV, Damante G, Lee BJ: Thyroid transcription factor-1 facilitates cerebrospinal fluid formation by regulating aquaporin-1 synthesis in the brain. J Biol Chem. 2007, 282: 14923-14931.
Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT: Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. Faseb J. 2005, 19: 76-78.
Oshio K, Song Y, Verkman AS, Manley GT: Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir Suppl. 2003, 86: 525-528.
Preston JE: Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech. 2001, 52: 31-37.
Longatti PL, Basaldella L, Orvieto E, Fiorindi A, Carteri A: Choroid plexus and aquaporin-1: a novel explanation of cerebrospinal fluid production. Pediatr Neurosurg. 2004, 40: 277-283.
Scavone C, Scanlon C, McKee M, Nathanson JA: Atrial natriuretic peptide modulates sodium and potassium-activated adenosine triphosphatase through a mechanism involving cyclic GMP and cyclic GMP-dependent protein kinase. J Pharmacol Exp Ther. 1995, 272: 1036-1043.
Preston JE, McMillan PN, Stopa EG, Nashold JR, Duncan JA, Johanson CE: Atrial natriuretic peptide induction of dark epithelial cells in choroid plexus: consistency with the model of CSF downregulation in hydrocephalus. Eur J Pediatr Surg. 2003, 13 (Suppl 1): S40-42.
Johanson CE, Preston JE, Chodobski A, Stopa EG, Szmydynger-Chodobska J, McMillan PN: AVP V1 receptor-mediated decrease in Cl- efflux and increase in dark cell number in choroid plexus epithelium. Am J Physiol. 1999, 276: C82-90.
Faraci FM, Mayhan WG, Heistad DD: Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am J Physiol. 1990, 258: R94-98.
Nguyen T, Reid S, Flaherty S, Ong H, McMillan P, Johanson C: Expression of natriuretic peptides and their receptors in the rat choroid plexus. Second International Choroid Plexus Workshop. 2003, King's College; London, UK
Carcenac C, Herbute S, Masseguin C, Mani-Ponset L, Maurel D, Briggs R, Guell A, Gabrion JB: Hindlimb-suspension and spaceflight both alter cGMP levels in rat choroid plexus. J Gravit Physiol. 1999, 6: 17-24.
Steardo L, Nathanson JA: Brain barrier tissues: end organs for atriopeptins. Science. 1987, 235: 470-473.
Mori K, Tsutsumi K, Kurihara M, Kawaguchi T, Niwa M: Alteration of atrial natriuretic peptide receptors in the choroid plexus of rats with induced or congenital hydrocephalus. Childs Nerv Syst. 1990, 6: 190-193.
Herbute S, Oliver J, Davet J, Viso M, Ballard RW, Gharib C, Gabrion J: ANP binding sites are increased in choroid plexus of SLS-1 rats after 9 days of spaceflight. Aviat Space Environ Med. 1994, 65: 134-138.
Korting C, van Zwieten EJ, Boer GJ, Ravid R, Swaab DF: Increase in vasopressin binding sites in the human choroid plexus in Alzheimer's disease. Brain Res. 1996, 706: 151-154.
Silverberg G, Mayo M, Saul T, Fellmann J, McGuire D: Elevated cerebrospinal fluid pressure in patients with Alzheimer's disease. Cerebrospinal Fluid Res. 2006, 3: 7-
Albeck MJ, Skak C, Nielsen PR, Olsen KS, Borgesen SE, Gjerris F: Age dependency of resistance to cerebrospinal fluid outflow. J Neurosurg. 1998, 89: 275-278.
Barbiro-Micahely E, Mayevsky A: Multiparametric monitoring of brain under elevated intracranial pressure in a rat model. J Neurotrauma. 2001, 18: 711-725.
Doczi T, Joo F, Vecsernyes M, Bodosi M: Increased concentration of atrial natriuretic factor in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage and raised intracranial pressure. Neurosurgery. 1988, 23: 16-19.
Akdemir G, Luer MS, Dujovny M, Misra M: Intraventricular atrial natriuretic peptide for acute intracranial hypertension. Neurol Res. 1997, 19: 515-520.
Minamikawa J, Kikuchi H, Ishikawa M, Yamamura K, Kanashiro M: The effects of atrial natriuretic peptide on brain edema, intracranial pressure and cerebral energy metabolism in rat congenital hydrocephalus. Acta Neurochir Suppl (Wien). 1994, 60: 104-106.
Johanson CE, Donahue JE, Spangenberger A, Stopa EG, Duncan JA, Sharma HS: Atrial natriuretic peptide: its putative role in modulating the choroid plexus-CSF system for intracranial pressure regulation. Acta Neurochir Suppl. 2006, 96: 451-456.
Yamasaki H, Sugino M, Ohsawa N: Possible regulation of intracranial pressure by human atrial natriuretic peptide in cerebrospinal fluid. Eur Neurol. 1997, 38: 88-93.
Fukushima T: Alteration of atrial natriuretic peptide and cyclic GMP in cerebrospinal fluid in canine kaolin-induced hydrocephalus. No To Shinkei. 1992, 44: 457-462.
Tulassay T, Khoor A, Bald M, Ritvay J, Szabo A, Rascher W: Cerebrospinal fluid concentrations of atrial natriuretic peptide in children. Acta Paediatr Hung. 1990, 30: 201-207.
Tsutsumi K: Alterations of atrial natriuretic peptide receptor in the choroid plexus of rats with congenital hydrocephalus (LEW-HYR and HTX). No To Shinkei. 1990, 42: 539-545.
Hise M, Johanson C: Inhibition of cerebrospinal fluid flow by dibutyryl guanosine-3'-5'-cyclic monophosphoric acid. Fed Proceed. 1978, 37: 514-
Zorad S, Alsasua A, Saavedra JM: Decreased expression of natriuretic peptide A receptors and decreased cGMP production in the choroid plexus of spontaneously hypertensive rats. Mol Chem Neuropathol. 1998, 33: 209-222.
Hammer M, Sorensen PS, Gjerris F, Larsen K: Vasopressin in the cerebrospinal fluid of patients with normal pressure hydrocephalus and benign intracranial hypertension. Acta Endocrinol (Copenh). 1982, 100: 211-215.
Jones HC, Deane R, Bucknall RM: Developmental changes in cerebrospinal fluid pressure and resistance to absorption in rats. Brain Res. 1987, 430: 23-30.
Johanson CE, Reed DJ, Woodbury DM: Developmental studies of the compartmentalization of water and electrolytes in the choroid plexus of the neonatal rat brain. Brain Res. 1976, 116: 35-48.
Pershing LK, Johanson CE: Acidosis-induced enhanced activity of the Na-K exchange pump in the in vivo choroid plexus: an ontogenetic analysis of possible role in cerebrospinal fluid pH homeostasis. J Neurochem. 1982, 38: 322-332.
Szmydynger-Chodobska J, Chodobski A, Johanson CE: Postnatal developmental changes in blood flow to choroid plexuses and cerebral cortex of the rat. Am J Physiol. 1994, 266: R1488-1492.
Yacavone RF, Dyas ML, Johanson CE: A developmental analysis of differences in the uptake of [123I]isopropyliodoamphetamine versus 99mTc-pertechnetate by the choroid plexus and brain. Neurochem Res. 1994, 19: 379-384.
Parmelee JT, Johanson CE: Development of potassium transport capability by choroid plexus of infant rats. Am J Physiol. 1989, 256: R786-791.
Johanson CE, Parandoosh Z, Dyas ML: Maturational differences in acetazolamide-altered pH and HCO3 of choroid plexus, cerebrospinal fluid, and brain. Am J Physiol. 1992, 262: R909-914.
Smith QR, Woodbury DM, Johanson CE: Kinetic analysis of [36Cl]-, [22Na]- and [3H]mannitol uptake into the in vivo choroid plexus-cerebrospinal fluid brain system: ontogeny of the blood brain and blood-CSF barriers. Brain Res. 1982, 255: 181-198.
Johanson C, Woodbury D: Changes in CSF flow and extracellular space in the developing rat. Drugs and the Developing Brain. Edited by: Vernadakis A, Weiner N. 1974, New York: Plenum Press, 281-287.
Bering EA: Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg. 1962, 19: 405-413.
Jones HC, Bucknall RM: Changes in cerebrospinal fluid pressure and outflow from the lateral ventricles during development of congenital hydrocephalus in the H-Tx rat. Exp Neurol. 1987, 98: 573-583.
Jones HC, Lopman BA: The relation between CSF pressure and ventricular dilatation in hydrocephalic HTx rats. Eur J Pediatr Surg. 1998, 8 (Suppl 1): 55-58.
Kaiser G, Jones HC: Cerebrospinal fluid pressure in 10-day-old rats with congenital hydrocephalus. Eur J Pediatr Surg. 1991, 1 (Suppl 1): 20-22.
Owen-Lynch PJ, Draper CE, Mashayekhi F, Bannister CM, Miyan JA: Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. Brain. 2003, 126: 623-631.
Miyan JA, Nabiyouni M, Zendah M: Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol. 2003, 81: 317-328.
Davy BE, Robinson ML: Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet. 2003, 12: 1163-1170.
Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, Bell PD, Schwiebert EM, Yoder BK: Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 2005, 132: 5329-5339.
Mashayekhi F, Salehi Z: Expression of nerve growth factor in cerebrospinal fluid of congenital hydrocephalic and normal children. Eur J Neurol. 2005, 12: 632-637.
Nadvi SS, Annamalai K, Naicker VL, Govender UG, Nathoo N, Van Dellen JR, Bhigjee AI: Cytokine expression in patients with treated congenital hydrocephalus: a preliminary report of five patients. East Afr Med J. 1999, 76: 696-699.
Del Bigio MR: Hydrocephalus-induced changes in the composition of cerebrospinal fluid. Neurosurgery. 1989, 25: 416-423.
Hayamizu TF, Chan PT, Johanson CE: FGF-2 immunoreactivity in adult rat ependyma and choroid plexus: responses to global forebrain ischemia and intraventricular FGF-2. Neurol Res. 2001, 23: 353-358.
Johanson CE, Palm DE, Primiano MJ, McMillan PN, Chan P, Knuckey NW, Stopa EG: Choroid plexus recovery after transient forebrain ischemia: role of growth factors and other repair mechanisms. Cell Mol Neurobiol. 2000, 20: 197-216.
Martinez-Pena y Valenzuela I, Carmona-Calero EM, Perez-Gonzalez H, Ormazabal-Ramos C, Fernandez-Rodriguez P, Gonzalez-Marrero I, Castaneyra-Perdomo A, Ferres-Torres R: Alterations of the cerebrospinal fluid proteins and subcommissural organ secretion in the arterial hypertension and ventricular dilatation. A study in SHR rats. Histol Histopathol. 2006, 21: 179-185.
Somera KC, Jones HC: Reduced subcommissural organ glycoprotein immunoreactivity precedes aqueduct closure and ventricular dilatation in H-Tx rat hydrocephalus. Cell Tissue Res. 2004, 315: 361-373.
Meiniel A: The secretory ependymal cells of the subcommissural organ: which role in hydrocephalus?. Int J Biochem Cell Biol. 2007, 39: 463-468.
Perez-Figares JM, Jimenez AJ, Rodriguez EM: Subcommissural organ, cerebrospinal fluid circulation, and hydrocephalus. Microsc Res Tech. 2001, 52: 591-607.
Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV, Arendash GW: Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol. 1999, 155: 109-117.
Kawamata T, Katayama Y, Tsuji N, Nishimoto H: Metabolic derangements in interstitial brain edema with preserved blood flow: selective vulnerability of the hippocampal CA3 region in rat hydrocephalus. Acta Neurochir Suppl. 2003, 86: 545-547.
Klinge PM, Samii A, Muhlendyck A, Visnyei K, Meyer GJ, Walter GF, Silverberg GD, Brinker T: Cerebral hypoperfusion and delayed hippocampal response after induction of adult kaolin hydrocephalus. Stroke. 2003, 34: 193-199.
Del Bigio MR, Bruni JE, Vriend JP: Monoamine neurotransmitters and their metabolites in the mature rabbit brain following induction of hydrocephalus. Neurochem Res. 1998, 23: 1379-1386.
Balasubramaniam J, Del Bigio MR: Analysis of age-dependant alteration in the brain gene expression profile following induction of hydrocephalus in rats. Exp Neurol. 2002, 173: 105-113.
McAllister JP, Chovan P: Neonatal hydrocephalus. Mechanisms and consequences. Neurosurg Clin N Am. 1998, 9: 73-93.
Del Bigio MR, Bruni JE: Silicone oil-induced hydrocephalus in the rabbit. Childs Nerv Syst. 1991, 7: 79-84.
Raisis JE, Kindt GW, McGillicuddy JE, Miller CA: Cerebrospinal fluid lactate and lactate/pyruvate ratios in hydrocephalus. J Neurosurg. 1976, 44: 337-341.
Schalk KA, Faraci FM, Williams JL, VanOrden D, Heistad DD: Effect of atriopeptin on production of cerebrospinal fluid. J Cereb Blood Flow Metab. 1992, 12: 691-696.
Tamaki K, Saku Y, Ogata J: Effects of angiotensin and atrial natriuretic peptide on the cerebral circulation. J Cereb Blood Flow Metab. 1992, 12: 318-325.
Tsugane S, Suzuki Y, Kano T, Takayasu M, Shibuya M, Sugita K: Differing effects of vasopressin on regional cerebral blood flow of dogs following intracisternal vs. intra-arterial administration. Life Sci. 1994, 54: PL241-246.
Josko J, Hendryk S, Jedrzejowska-Szypulka H, Gwozdz B, Herman ZS, Latka D, Kopec N: Atrial natriuretic peptide secretion following subarachnoid hemorrhage in spontaneously hypertensive rats. J Physiol Pharmacol. 1996, 47: 641-648.
Naruse S, Aoki Y, Horikawa Y, Tanaka C, Higuchi T, Ebisu T, Ueda S, Kondo S, Kiyota T, Hayashi H: Effects of atrial natriuretic peptide on ischaemic brain oedema evaluated by the proton magnetic resonance method. Acta Neurochir Suppl (Wien). 1990, 51: 248-250.
Eide PK: Comparison of simultaneous continuous intracranial pressure (ICP) signals from a Codman and a Camino ICP sensor. Med Eng Phys. 2006, 28: 542-549.
Brean A, Eide PK, Stubhaug A: Comparison of intracranial pressure measured simultaneously within the brain parenchyma and cerebral ventricles. J Clin Monit Comput. 2006, 20: 411-414.
Czosnyka Z, Czosnyka M, Pickard JD: CSF pulse pressure and B waves. J Neurosurg. 2005, 103: 767-768. author reply 768.
Momjian S, Czosnyka Z, Czosnyka M, Pickard JD: Link between vasogenic waves of intracranial pressure and cerebrospinal fluid outflow resistance in normal pressure hydrocephalus. Br J Neurosurg. 2004, 18: 56-61.
Czosnyka M, Czosnyka Z, Momjian S, Pickard JD: Cerebrospinal fluid dynamics. Physiol Meas. 2004, 25: R51-76.
Czosnyka ZH, Cieslicki K, Czosnyka M, Pickard JD: Hydrocephalus shunts and waves of intracranial pressure. Med Biol Eng Comput. 2005, 43: 71-77.
Eide PK: Comparison of simultaneous continuous intracranial pressure (ICP) signals from a Codman and a Camino ICP sensor. Med Eng Phys. 2008, 30: 34-40.
Eide PK: A new method for processing of continuous intracranial pressure signals. Med Eng Phys. 2006, 28: 579-587.
Eide PK: Assessment of childhood intracranial pressure recordings using a new method of processing intracranial pressure signals. Pediatr Neurosurg. 2005, 41: 122-130.
Eide PK: Assessment of quality of continuous intracranial pressure recordings in children. Pediatr Neurosurg. 2006, 42: 28-34.
Eide PK: Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients treated with ventriculo-peritoneal shunts. Acta Neurochir (Wien). 2006, 148: 21-29. discussion 29.
Eide PK, Sorteberg W: Preoperative spinal hydrodynamics versus clinical change 1 year after shunt treatment in idiopathic normal pressure hydrocephalus patients. Br J Neurosurg. 2005, 19: 475-483.
Eide PK, Brean A: Intracranial pulse pressure amplitude levels determined during preoperative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien). 2006, 148: 1151-1156. discussion 1156.
Foss T, Eide PK, Finset A: Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients with or without improvement of cognitive function after shunt treatment. Dement Geriatr Cogn Disord. 2007, 23: 47-54.
Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelso C: Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry. 2005, 76: 965-970.
Lenfeldt N, Andersson N, Agren-Wilsson A, Bergenheim AT, Koskinen LO, Eklund A, Malm J: Cerebrospinal fluid pulse pressure method: a possible substitute for the examination of B waves. J Neurosurg. 2004, 101: 944-950.
Querfurth HW, Arms SW, Lichy CM, Irwin WT, Steiner T: Prediction of intracranial pressure from noninvasive transocular venous and arterial hemodynamic measurements: a pilot study. Neurocrit Care. 2004, 1: 183-194.
Heese O, Regelsberger J, Kehler U, Westphal M: Hollow mandrin facilitates external ventricular drainage placement. Acta Neurochir (Wien). 2005, 147: 759-762.
Czepko R, Cieslicki K, Niedzwiedzki J, Libionka W, Pietraszko W: Possibilities of data acquisition, recording and processing based on the system for continuous intracranial pressure and cerebral perfusion pressure monitoring designed at the Department of Neurosurgery of the Jagiellonian University in Cracow. Przegl Lek. 2005, 62: 111-114.
Traczewski W, Moskala M, Kruk D, Goscinski I, Szwabowska D, Polak J, Wielgosz K: The role of computerized rheoencephalography in the assessment of normal pressure hydrocephalus. J Neurotrauma. 2005, 22: 836-843.
Linninger AA, Tsakiris C, Zhu DC, Xenos M, Roycewicz P, Danziger Z, Penn R: Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans Biomed Eng. 2005, 52: 557-565.
Pena A, Harris NG, Bolton MD, Czosnyka M, Pickard JD: Communicating hydrocephalus: the biomechanics of progressive ventricular enlargement revisited. Acta Neurochir Suppl. 2002, 81: 59-63.
Pena A, Bolton MD, Whitehouse H, Pickard JD: Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis. Neurosurgery. 1999, 45: 107-116. discussion 116–108.
Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD: Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience. 1996, 75: 1271-1288.
Nagaraja TN, Patel P, Gorski M, Gorevic PD, Patlak CS, Fenstermacher JD: In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain. Cerebrospinal Fluid Res. 2005, 2: 5-
Reulen HJ, Tsuyumu M, Tack A, Fenske AR, Prioleau GR: Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg. 1978, 48: 754-764.
Pickard JD, Coleman MR, Czosnyka M: Hydrocephalus, ventriculomegaly and the vegetative state: a review. Neuropsychol Rehabil. 2005, 15: 224-236.
Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM: The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005, 57: S17-28. discussion ii–v.
Shapiro K, Marmarou A, Shulman K: Characterization of clinical CSF dynamics and neural axis compliance using the pressure-volume index: I. The normal pressure-volume index. Ann Neurol. 1980, 7: 508-514.
Chahlavi A, El-Babaa SK, Luciano MG: Adult-onset hydrocephalus. Neurosurg Clin N Am. 2001, 12: 753-760.
Pratico D, Yao Y, Rokach J, Mayo M, Silverberg GD, McGuire D: Reduction of brain lipid peroxidation by CSF drainage in Alzheimer's disease patients. J Alzheimers Dis. 2004, 6: 385-389.
Pourghasem M, Mashayekhi F, Bannister CM, Miyan J: Changes in the CSF fluid pathways in the developing rat fetus with early onset hydrocephalus. Eur J Pediatr Surg. 2001, 11 (Suppl 1): S10-13.
Nojima Y, Enzan H, Hayashi Y, Nakayama H, Kiyoku H, Hiroi M, Mori K: Neuroepithelial and ependymal changes in HTX rats with congenital hydrocephalus: an ultrastructural and immunohistochemical study. Pathol Int. 1998, 48: 115-125.
Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Herning M, Owman C: Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Physiol. 1992, 262: R20-24.
Johanson CE, Szmydynger-Chodobska J, Chodobski A, Baird A, McMillan P, Stopa EG: Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Physiol. 1999, 277: R263-271.
Hakvoort A, Johanson CE: Growth factor modulation of CSF formation by isolated choroid plexus: FGF-2 vs. TGF-beta1. Eur J Pediatr Surg. 2000, 10 (Suppl 1): 44-46.
Knuckey NW, Preston J, Palm D, Epstein MH, Johanson C: Hydrocephalus decreases chloride efflux from the choroid plexus epithelium. Brain Res. 1993, 618: 313-317.
Ridgway JP, Turnbull LW, Smith MA: Demonstration of pulsatile cerebrospinal-fluid flow using magnetic resonance phase imaging. Br J Radiol. 1987, 60: 423-427.
Maeder P, Gudinchet F, Meuli R, Fankhauser H: Dynamic MRI of cerebrospinal fluid flow in endoscopic percutaneous ventriculostomy. Br J Neurosurg. 1998, 12: 18-22.
Nilsson C, Stahlberg F, Gideon P, Thomsen C, Henriksen O: The nocturnal increase in human cerebrospinal fluid production is inhibited by a beta 1-receptor antagonist. Am J Physiol. 1994, 267: R1445-1448.
Stoquart-ElSankari S, Baledent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME: Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab. 2007, 27: 1563-1572.
McCormack EJ, Egnor MR, Wagshul ME: Improved cerebrospinal fluid flow measurements using phase contrast balanced steady-state free precession. Magn Reson Imaging. 2007, 25: 172-182.
Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE, Flanders KC, Thompson NL: Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia. Brain Res Mol Brain Res. 1996, 40: 1-14.
Palm D, Knuckey N, Guglielmo M, Watson P, Primiano M, Johanson C: Choroid plexus electrolytes and ultrastructure following transient forebrain ischemia. Am J Physiol. 1995, 269: R73-79.
Fernandez-Carriera RA, Gonzalez-Quevedo A, Lara-Rodriguez RF, Leon-Ortiz MM, Gonzalez-Garcia S, Vicente-Valdes I: Electrophoresis of cerebrospinal fluid proteins in patients with ischemic cerebrovascular disease. Rev Neurol. 2002, 35: 908-912.
Sharma HS, Duncan JA, Johanson CE: Whole-body hyperthermia in the rat disrupts the blood-cerebrospinal fluid barrier and induces brain edema. Acta Neurochir Suppl. 2006, 96: 426-431.
Drake J: Slit-ventricle syndrome. J Neurosurg. 2005, 102: 257-258. discussion 258–259.
Marmarou A, Shulman K, LaMorgese J: Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975, 43: 523-534.
Egnor M, Zheng L, Rosiello A, Gutman F, Davis R: A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg. 2002, 36: 281-303.
Jacobs S, Ruusuvuori E, Sipila ST, Haapanen A, Damkier HH, Kurth I, Hentschke M, Schweizer M, Rudhard Y, Laatikainen LM, Tyynela J, Praetorius J Voipio J, Hubner CA: Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci USA. 2008, 105: 311-316.
Milhorat TH, Hammock MK, Davis DA, Fenstermacher JD: Choroid plexus papilloma. I. Proof of cerebrospinal fluid overproduction. Childs Brain. 1976, 2: 273-289.
Cuevas P, Gimenez-Gallego G: Fibroblast growth factor and hydrocephalus. Neurol Res. 2000, 22: 102-104.
Al-Sarraf H, Philip L: Effect of hypertension on the integrity of blood brain and blood CSF barriers, cerebral blood flow and CSF secretion in the rat. Brain Res. 2003, 975: 179-188.
Ruchoux MM, Rosati C, Gelot A, Lhuintre Y, Garay R: Ultrastructural study of the choroid plexus of spontaneously hypertensive rats. Am J Hypertens. 1992, 5: 851-856.
Rosati C, Ruchoux M, Gruber K, Garay RP: Cellular aspects of [Na+, K+, Cl-]- cotransport system in primary hypertension studies in red cells and in the choroid plexus of spontaneously hypertensive rats (SHR). Cellular Aspects of Hypertension. Edited by: Bruschi G, Borghetti A. 1992, Berlin- Heidelberg- New York: Springer-Verlag, 257-261.
Murphy VA, Johanson CE: Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries. J Cereb Blood Flow Metab. 1985, 5: 401-412.
Johanson C, Donahue J, Stopa E, Baird A: Fibroblast growth factor and the blood-brain barrier. Handbook of Biologically Active Peptides. Edited by: Kastin A, Pan W. 2006, Amsterdam: Elsevier, 1467-1472.
Doczi T: Volume regulation of the brain tissue – a survey. Acta Neurochir (Wien). 1993, 121: 1-8.
Rosenberg GA, Kyner WT, Fenstermacher JD, Patlak CS: Effect of vasopressin on ependymal and capillary permeability to tritiated water in cat. Am J Physiol. 1986, 251: F485-489.
Rodriguez EM: The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol. 1976, 71: 407-443.
Rodriguez EM, Heller H: Antidiuretic activity and ultrastructure of the toad choroid plexus. J Endocrinol. 1970, 46: 83-91.
Schultz WJ, Brownfield MS, Kozlowski GP: The hypothalamo-choroidal tract. II. Ultrastructural response of the choroid plexus to vasopressin. Cell Tissue Res. 1977, 178: 129-141.
Brownfield MS, Kozlowski GP: The hypothalamo-choroidal tract. I. Immunohistochemical demonstration of neurophysin pathways to telencephalic choroid plexuses and cerebrospinal fluid. Cell Tissue Res. 1977, 178: 111-127.
Chodobski A, Loh YP, Corsetti S, Szmydynger-Chodobska J, Johanson CE, Lim YP, Monfils PR: The presence of arginine vasopressin and its mRNA in rat choroid plexus epithelium. Brain Res Mol Brain Res. 1997, 48: 67-72.
Johanson CE, Gonzalez AM, Stopa EG: Water-imbalance-induced expression of FGF-2 in fluid-regulatory centers: choroid plexus and neurohypophysis. Eur J Pediatr Surg. 2001, 11 (Suppl 1): S37-38.
Hertz L, Chen Y, Spatz M: Involvement of non-neuronal brain cells in AVP-mediated regulation of water space at the cellular, organ, and whole-body level. J Neurosci Res. 2000, 62: 480-490.
Szmydynger-Chodobska J, Chun ZG, Johanson CE, Chodobski A: Distribution of fibroblast growth factor receptors and their co-localization with vasopressin in the choroid plexus epithelium. Neuroreport. 2002, 13: 257-259.
Zemo DA, McCabe JT: Salt-loading increases vasopressin and vasopressin 1b receptor mRNA in the hypothalamus and choroid plexus. Neuropeptides. 2001, 35: 181-188.
Nishikimi T, Maeda N, Matsuoka H: The role of natriuretic peptides in cardioprotection. Cardiovasc Res. 2006, 69: 318-328.
Saavedra JM, Kurihara M: Autoradiography of atrial natriuretic peptide (ANP) receptors in the rat brain. Can J Physiol Pharmacol. 1991, 69: 1567-1575.
Okazaki M, Kobayashi H, Kuroiwa A, Izumi F: Atrial natriuretic peptide receptors in cerebral microvessels and choroid plexus of spontaneously hypertensive rats. Brain Res. 1990, 518: 292-294.
Brown J, Czarnecki A: Binding of atrial and brain natriuretic peptides in brains of hypertensive rats. Brain Res. 1990, 512: 132-137.
Saavedra JM: Alterations in atrial natriuretic peptide receptors in rat brain nuclei during hypertension and dehydration. Can J Physiol Pharmacol. 1988, 66: 288-294.
Chodobski A, Szmydynger-Chodobska J, Johanson CE: Vasopressin mediates the inhibitory effect of central angiotensin II on cerebrospinal fluid formation. Eur J Pharmacol. 1998, 347: 205-209.
Rapoport SI, Schapiro MB, May C: Reduced brain delivery of homovanillic acid to cerebrospinal fluid during human aging. Arch Neurol. 2004, 61: 1721-1724.
Klinge PM, Samii A, Niescken S, Brinker T, Silverberg GD: Brain amyloid accumulates in aged rats with kaolin-induced hydrocephalus. Neuroreport. 2006, 17: 657-660.
Husted RF, Reed DJ: Regulation of cerebrospinal fluid bicarbonate by the cat choroid plexus. J Physiol. 1977, 267: 411-428.
Husted RF, Reed DJ: Regulation of cerebrospinal fluid potassium by the cat choroid plexus. J Physiol. 1976, 259: 213-221.
Spector R, Johanson C: Micronutrient and urate transport in choroid plexus and kidney: implications for drug therapy. Pharm Res. 2006, 23: 2515-2524.
Johanson C, Silverberg G, Donahue J, Duncan J, Stopa E: Choroid plexus and CSF in Alzheimer's Disease: Altered expression and transport of proteins and peptides. The Blood-Cerebrospinal Fluid Barrier. Edited by: Zheng W, Chodobski A. 2004, Boca Raton: CRC Press LLC, 307-339.
Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG: Microvascular injury and blood-brain barrier leakage in Alzheimer's disease. Neurobiol Aging. 2007, 28: 977-986.
Donahue JE, Flaherty SL, Johanson CE, Duncan JA, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, et al: RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol. 2006, 112: 405-415.
Davidsson P, Westman-Brinkmalm A, Nilsson CL, Lindbjer M, Paulson L, Andreasen N, Sjogren M, Blennow K: Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport. 2002, 13: 611-615.
Fonteh AN, Harrington RJ, Huhmer AF, Biringer RG, Riggins JN, Harrington MG: Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers. 2006, 22: 39-64.
Serot JM, Bene MC, Faure GC: Choroid plexus, aging of the brain, and Alzheimer's disease. Front Biosci. 2003, 8: s515-521.
Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV: Clearance of Alzheimer's amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest. 2000, 106: 1489-1499.
Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, Hall WA, Hynynen K, Senter PD, Peereboom DM, Neuwelt EA: Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol. 2007, 25: 2295-2305.
Shuvaev VV, Laffont I, Serot JM, Fujii J, Taniguchi N, Siest G: Increased protein glycation in cerebrospinal fluid of Alzheimer's disease. Neurobiol Aging. 2001, 22: 397-402.
Spector R, Johanson CE: The origin of deoxynucleosides in brain: implications for the study of neurogenesis and stem cell therapy. Pharm Res. 2007, 24: 859-867.
Spector R: Nucleoside and vitamin homeostasis in the mammalian central nervous system. Ann N Y Acad Sci. 1986, 481: 221-230.
Spector R, Eells J: Deoxynucleoside and vitamin transport into the central nervous system. Fed Proc. 1984, 43: 196-200.
Dickson PW, Aldred AR, Marley PD, Bannister D, Schreiber G: Rat choroid plexus specializes in the synthesis and the secretion of transthyretin (prealbumin). Regulation of transthyretin synthesis in choroid plexus is independent from that in liver. J Biol Chem. 1986, 261: 3475-3478.
Sousa JC, Cardoso I, Marques F, Saraiva MJ, Palha JA: Transthyretin and Alzheimer's disease: where in the brain?. Neurobiol Aging. 2007, 28: 713-718.
Chen RL, Athauda SB, Kassem NA, Zhang Y, Segal MB, Preston JE: Decrease of transthyretin synthesis at the blood-cerebrospinal fluid barrier of old sheep. J Gerontol A Biol Sci Med Sci. 2005, 60: 852-858.
Serot JM, Christmann D, Dubost T, Couturier M: Cerebrospinal fluid transthyretin: aging and late onset Alzheimer's disease. J Neurol Neurosurg Psychiatry. 1997, 63: 506-508.
Li MD, Kane JK, Matta SG, Blaner WS, Sharp BM: Nicotine enhances the biosynthesis and secretion of transthyretin from the choroid plexus in rats: implications for beta-amyloid formation. J Neurosci. 2000, 20: 1318-1323.
Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V, Rodriguez-Wolf M, Baird A, Johanson CE: Human choroid plexus growth factors: What are the implications for CSF dynamics in Alzheimer's disease?. Exp Neurol. 2001, 167: 40-47.
Anthony SG, Schipper HM, Tavares R, Hovanesian V, Cortez SC, Stopa EG, Johanson CE: Stress protein expression in the Alzheimer-diseased choroid plexus. J Alzheimers Dis. 2003, 5: 171-177.
Dietrich MO, Spuch C, Antequera D, Rodal I, de Yebenes JG, Molina JA, Bermejo F, Carro E: Megalin mediates the transport of leptin across the blood-CSF barrier. Neurobiol Aging. 2007
Crossgrove JS, Li GJ, Zheng W: The choroid plexus removes beta-amyloid from brain cerebrospinal fluid. Exp Biol Med (Maywood). 2005, 230: 771-776.
Venkatakrishnan K, Tseng E, Nelson FR, Rollema H, French JL, Kaplan IV, Horner WE, Gibbs MA: Central nervous system pharmacokinetics of the Mdr1 P-glycoprotein substrate CP-615,003: intersite differences and implications for human receptor occupancy projections from cerebrospinal fluid exposures. Drug Metab Dispos. 2007, 35: 1341-1349.
Johnston M, Boulton M, Flessner M: Cerebrospinal fluid absorption revisited: Do extracranial lymphatics play a role?. The Neuroscientist. 2000, 6: 77-87.
Nilsson C, Lindvall-Axelsson M, Owman C: Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Brain Res Rev. 1992, 17: 109-138.
Tisell M, Tullberg M, Mansson JE, Fredman P, Blennow K, Wikkelso C: Differences in cerebrospinal fluid dynamics do not affect the levels of biochemical markers in ventricular CSF from patients with aqueductal stenosis and idiopathic normal pressure hydrocephalus. Eur J Neurol. 2004, 11: 17-23.
Tullberg M, Mansson JE, Fredman P, Lekman A, Blennow K, Ekman R, Rosengren LE, Tisell M, Wikkelso C: CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry. 2000, 69: 74-81.
Spector R, Johanson CE: Vitamin transport and homeostasis in mammalian brain: focus on Vitamins B and E. J Neurochem. 2007, 103: 425-438.
Cserr HF, Cooper DN, Suri PK, Patlak CS: Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol. 1981, 240: F319-328.
Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984, 246: F835-844.
Bradbury M: The Concept of a Blood-Brain Barrier. 1979, Chichester: Wiley and Sons, Ltd
Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA: Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985, 326: 47-63.
Rennels ML, Blaumanis OR, Grady PA: Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol. 1990, 52: 431-439.
Proescholdt MG, Hutto B, Brady LS, Herkenham M: Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat. Neuroscience. 2000, 95: 577-592.
Enomoto A, Niwa T: Roles of organic anion transporters in the progression of chronic renal failure. Ther Apher Dial. 2007, 11 (Suppl 1): S27-31.
Johanson C, Flaherty S, Duncan J, Stopa E, Silverberg G: Aging rat brain: A model for analyzing interactions among CSF dynamics, ventriculomegaly and the beta-amyloid retention of Alzheimer's disease. Cerebrospinal Fluid Res. 2005, 2 (Suppl 1): S6-
Stopa EG, Butala P, Salloway S, Johanson CE, Gonzalez L, Tavares R, Hovanesian V, Hulette CM, Vitek MP, Cohen RA: Cerebral cortical arteriolar angiopathy, vascular beta-amyloid, smooth muscle actin, Braak stage, and APOE genotype. Stroke. 2008, 39: 814-821.
Eklund A, Smielewski P, Chambers I, Alperin N, Malm J, Czosnyka M, Marmarou A: Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput. 2007, 45: 719-735.
Jones HC, Gratton JA: The drainage of cerebrospinal fluid in hydrocephalic rats. Z Kinderchir. 1989, 44 (Suppl 1): 14-15.
Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer JA, Avezaat CJ, de Jong DA, Gooskens RH, Hermans J: Does CSF outflow resistance predict the response to shunting in patients with normal pressure hydrocephalus?. Acta Neurochir Suppl. 1998, 71: 331-333.
Jones HC, Gratton JA: The effect of cerebrospinal fluid pressure on dural venous pressure in young rats. J Neurosurg. 1989, 71: 119-123.
Erlich SS, McComb JG, Hyman S, Weiss MH: Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J Neurosurg. 1986, 64: 466-473.
Erlich SS, McComb JG, Hyman S, Weiss MH: Ultrastructure of the orbital pathway for cerebrospinal fluid drainage in rabbits. J Neurosurg. 1989, 70: 926-931.
Koh L, Zakharov A, Nagra G, Armstrong D, Friendship R, Johnston M: Development of cerebrospinal fluid absorption sites in the pig and rat: connections between the subarachnoid space and lymphatic vessels in the olfactory turbinates. Anat Embryol (Berl). 2006, 211: 335-344.
Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D: Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res. 2004, 1: 2-
Zakharov A, Papaiconomou C, Koh L, Djenic J, Bozanovic-Sosic R, Johnston M: Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep. Microvasc Res. 2004, 67: 96-104.
Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, Johnston M: Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol. 1999, 276: R818-823.
Johnston M, Zakharov A, Koh L, Armstrong D: Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lymphatics in the non-human primate. Neuropathol Appl Neurobiol. 2005, 31: 632-640.
Mollanji R, Bozanovic-Sosic R, Silver I, Li B, Kim C, Midha R, Johnston M: Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics. Am J Physiol Regul Integr Comp Physiol. 2001, 280: R1573-1581.
Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG: Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol. 2002, 282: R1593-1599.
Mollanji R, Papaiconomou C, Boulton M, Midha R, Johnston M: Comparison of cerebrospinal fluid transport in fetal and adult sheep. Am J Physiol Regul Integr Comp Physiol. 2001, 281: R1215-1223.
Brinker T, Ludemann W, Berens von Rautenfeld D, Samii M: Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol. 1997, 94: 493-498.
Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M: Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics?. Am J Physiol Regul Integr Comp Physiol. 2002, 283: R869-876.
Ludemann W, Berens von Rautenfeld D, Samii M, Brinker T: Ultrastructure of the cerebrospinal fluid outflow along the optic nerve into the lymphatic system. Childs Nerv Syst. 2005, 21: 96-103.
Grzybowski DM, Holman DW, Katz SE, Lubow M: In vitro model of cerebrospinal fluid outflow through human arachnoid granulations. Invest Ophthalmol Vis Sci. 2006, 47: 3664-3672.
Holman DW, Grzybowski DM, Mehta BC, Katz SE, Lubow M: Characterization of cytoskeletal and junctional proteins expressed by cells cultured from human arachnoid granulation tissue. Cerebrospinal Fluid Res. 2005, 2: 9-
Edsbagge M, Tisell M, Jacobsson L, Wikkelso C: Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol. 2004, 287: R1450-1455.
Luedemann W, Kondziella D, Tienken K, Klinge P, Brinker T, Berens von Rautenfeld D: Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolin-hydrocephalus. Acta Neurochir Suppl. 2002, 81: 271-273.
Voelz K, Kondziella D, von Rautenfeld DB, Brinker T, Ludemann W: A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus. Acta Neuropathol. 2007, 113: 569-575.
Shen XQ, Miyajima M, Ogino I, Arai H: Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J Neurosurg. 2006, 105: 459-464.
Bloch O, Auguste KI, Manley GT, Verkman AS: Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab. 2006, 26: 1527-1537.
Mao X, Enno TL, Del Bigio MR: Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci. 2006, 23: 2929-2936.
Johanson CE: The choroid plexus-arachnoid-cerebrospinal fluid system. Neuromethods: Neuronal Microenvironment- Electrolytes and Water Spaces. Edited by: Boulton A, Baker G, Walz W. 1988, Clifton, New Jersey: Humana Press, 9: 33-104.
Allen DD, Yokel RA: Dissimilar aluminum and gallium permeation of the blood-brain barrier demonstrated by in vivo microdialysis. J Neurochem. 1992, 58: 903-908.
Knuckey NW, Fowler AG, Johanson CE, Nashold JR, Epstein MH: Cisterna magna microdialysis of 22Na to evaluate ion transport and cerebrospinal fluid dynamics. J Neurosurg. 1991, 74: 965-971.
Naish JH, Baldwin RC, Patankar T, Jeffries S, Burns AS, Taylor CJ, Waterton JC, Jackson A: Abnormalities of CSF flow patterns in the cerebral aqueduct in treatment-resistant late-life depression: a potential biomarker of microvascular angiopathy. Magn Reson Med. 2006, 56: 509-516.
Johanson C, Duncan J, Baird A, Stopa E, McMillan P: Choroid plexus: A key player in neuroprotection and neuroregeneration. International Journal of Neuroprotection and Neuroregeneration. 2005, 1: 77-85.
Ludvig N, Sheffield LG, Tang HM, Baptiste SL, Devinsky O, Kuzniecky RI: Histological evidence for drug diffusion across the cerebral meninges into the underlying neocortex in rats. Brain Res. 2008, 1188: 228-232.
Praetorius J, Nielsen S: Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol. 2006, 291: C59-67.
Rao VV, Dahlheimer JL, Bardgett ME, Snyder AZ, Finch RA, Sartorelli AC, Piwnica-Worms D: Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci USA. 1999, 96: 3900-3905.
Boassa D, Yool AJ: Physiological roles of aquaporins in the choroid plexus. Curr Top Dev Biol. 2005, 67: 181-206.