Deformation of pearlite

Springer Science and Business Media LLC - Tập 8 - Trang 861-875 - 1977
George Langford1
1Department of Materials Engineering, Drexel University, Philadelphia

Tóm tắt

Pearlite with its lamellae oriented mainly parallel to the longitudinal direction was prepared by Bolling's method of transformation in a steep temperature gradient. The Fe-0.7 pct Mn-0.9 pct C pearlite was drawn into wire and also into strip in dies designed to minimize macroscopically nonuniform deformation. Cross sections of the drawn wires and strip were examined by conventional and high-voltage transmission electron microscopy and were analyzed by quantitative metallography for a) average interlamellar spacing, b) distribution of interlamellar spacings, and c) orientation relationship between the cementite lamellae and the slip systems in the ferrite. The strength of pearlite is proportional to the reciprocal square root of the average interlamellar spacing, and the proportionality constant analogous to the Hall-Petch constant (k) is related to the strength of the cementite lamellae. If the stress for the propagation of slip through the cementite is assumed constant, a Hall-Petch type of equation can be derived for the strengthening of the pearlite against slip in the ferrite by piled-up groups of dislocations. Evidence for the plastic deformability of cementite is presented; sufficiently thin cementite plates were fully plastic. The exponential strain hardening of drawn pearlitic wires and of rolled pearlite is explained in terms of locally inhomogenous deformation revealed by the lack of fragmentation of the lamellae.

Tài liệu tham khảo

J. D. Embury and R. M. Fisher:Acta Met., 1966, vol. 14, p. 147. G. Langford and M. Cohen:Trans. ASM, 1969, vol. 62, p. 623. H. J. Rack and M. Cohen:Mater. Sci. Eng., 1970, vol. 6, p. 320. G. Langford, P. K. Nagata, R. J. Sober, and W. C. Leslie:Met. Trans., 1972, vol. 3, p. 1843. G. Langford and M. Cohen:Proc. 2nd Int. Conf. on the Strength of Metals and Alloys, p. 475, ASM, Cleveland, Oh., 1970. G. Langford and M. Cohen:Met. Trans. A, 1975, vol. 6A, p. 901. V. M. Kardonskii, G. V. Kurdyumov, and M. D. Perkas:Metalloved. Term. Obrab. Metal., February, 1964, no. 2, p. 2. A. H. Holtzman, J. C. Danko, and R. D. Stout:Trans. TMS-AIME, 1958, vol. 212, p. 475. B. R. Butcher and H. R. Pettit:J. Iron Steel Inst., 1966, vol. 204, p. 469. J. T. Barnby and M. R. Johnson:Metal Sci. J., 1969, vol. 3, p. 155. T. Takahashi and M. Nagumo:Trans. Jap. Inst. Metals, 1970, vol. 11, p. 113. K. L. Maurer and D. H. Warrington:Phil. Mag., 1967, vol. 15, p. 321. A. S. Keh:Acta Met., 1963, vol. 11, p. 1101. K. E. Puttick:J. Iron Steel Inst., 1957, vol. 185, p. 161. M. Kaldor:Acta Met., 1962, vol. 10, p. 887. F. B. Pickering:Iron and Steel, 1965 vol. 38, p. 110. M. A. P. Dewey and G. W. Briers:J. Iron Steel Inst., 1966, vol. 204, p. 102. R. A. Grange: Unpublished work at E. C. Bain Laboratory, U.S. Steel Corporation. K. L. Maurer and R. Rossegger:Berg Huettenmaenn. Monatsh., 1966, vol. 111, p. 412. R. C. Gleen, G. Langford, and A. S. Keh:Trans. ASM, 1969, vol 62, p. 285. V. K. Babich, V. A. Pirogov, and L. A. Mikhailets:Zavod Lab., 1970, vol. 36, p. 710. G. Langford:Met. Trans., 1970, vol. 1, p. 465. E. J. Fasiska and G. A. Jeffrey:Acta Crystallogr., 1965, vol. 19, p. 463. S. S. Brenner:Fiber Composite Materials, p. 11. ASM, Cleveland, Oh., 1965. Y. T. Chou:Phys. Status Solidi, 1966, vol. 17, p. 509. V. K. Kritskaia, N. M. Nodia, and Yu. A. Osipiyan:Fiz. Metal. Metalloved., 1958, vol. 6, p. 177. G. Langford and M. Cohen:Met. Trans., 1970, vol. 1, p. 1478. Y. T. Chou:Can. J. Phys., 1967, vol. 45, p. 559. J. C. M. Li and Y. T. Chou:Met. Trans., 1970, vol. 1, p. 1145. J. Gurland: Presented at ASTM Meeting on Quantitative Metallog., Brown University, Division of Engineering, Providence, R.I., June 1971. R. W. Armstrong, Y. T. Chou, R. M. Fisher, and N. Louat:Phil. Mag., 1966, vol. 14, p. 943. S. Karashima and T. Sakuma:Trans. Jap. Inst. Metals, 1968, vol. 9, p. 63. G. F. Bolling and R. H. Richmann:Met. Trans., 1970, vol. 1, p. 2095. R. C. Glenn and R. D. Schoone:Rev. Sci. Instrum., 1964, vol. 34, p. 1223. W. F. Hosford, Jr.:Trans. TMS-AIME, 1964, vol. 230, p. 12. See, for example, R. Hill:The Mathematical Theory of Plasticity, p. 50, Clarendon Press, Oxford, 1960. K. Brown: Oral presentation at 1970 ASM/AIME Fall Meeting, Cleveland, Ohio, Kaiser Aluminum and Chemical Corporation Center for Technology. See, for example, W. Johnson, P. B. Mellor:Plasticity for Mechanical Engineers, p. 297. D. Van Nostrand Co., Ltd., New York, N.Y., 1962. A. P. Green and R. Hill:J. Mech. Phys. Solids, 1952, vol. 1, p. 31. W. Johnson and P. B. Mellor:op cit. W. Johnson and P. B. Mellor:op cit. J. Gil Sevillano:Mater. Sci. Eng., 1975, vol. 21, p. 221. A. K. Chakrabarti and J. W. Spretnak:Met Trans. A, 1975, vol. 6A, p. 733, 737. E. Aernoudt and J. Gil Sevillano:J. Iron Steel Inst., 1973, vol. 211, p. 718. C. S. Barrett and T. B. Massalski:Structure of Metals, 3rd ed., p. 548. McGraw Hill, New York, N.Y., 1966. W. A. Backofen:Deformation Processing, p. 253, Addison-Wesley, Reading, Mass., 1972.