Nonlinear approximation of 3D smectic liquid crystals: sharp lower bound and compactness

Springer Science and Business Media LLC - Tập 61 - Trang 1-29 - 2022
Michael Novack1, Xiaodong Yan2
1Department of Mathematics, The University of Texas at Austin, Austin, USA
2Department of Mathematics, The University of Connecticut, Storrs, USA

Tóm tắt

We consider the 3D smectic energy $$\begin{aligned} {\mathcal {E}}_{\epsilon }\left( u\right) =\frac{1}{2}\int _{\Omega }\frac{1}{\varepsilon } \left( \partial _{z}u-\frac{(\partial _{x}u)^{2}+(\partial _{y}u)^{2}}{2}\right) ^{2} +\varepsilon \left( \partial _{x}^{2}u+\partial _{y}^{2}u\right) ^{2}dx\,dy\,dz. \end{aligned}$$ The model contains as a special case the well-known 2D Aviles-Giga model. We prove a sharp lower bound on $${\mathcal {E}}_{\varepsilon }$$ as $$\varepsilon \rightarrow 0$$ by introducing 3D analogues of the Jin–Kohn entropies Jin and Kohn (J Nonlinear Sci 10:355–390, 2000). The sharp bound corresponds to an equipartition of energy between the bending and compression strains and was previously demonstrated in the physics literature only when the approximate Gaussian curvature of each smectic layer vanishes. Also, for $$\varepsilon _{n}\rightarrow 0$$ and an energy-bounded sequence $$\{u_n \}$$ with $$\Vert \nabla u_n\Vert _{L^{p}(\Omega )},\, \Vert \nabla u_n\Vert _{L^2(\partial \Omega )}\le C$$ for some $$p>6$$ , we obtain compactness of $$\nabla u_{n}$$ in $$L^{2}$$ assuming that $$\Delta _{xy}u_{n}$$ has constant sign for each n.

Tài liệu tham khảo

Alouges, F., Rivière, T., Serfaty, S.: Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM Control Optim. Calc. Var. 8, 31–68 (2002). (A tribute to J. L. Lions) Ambrosio, L., Dal Maso, G.: A general chain rule for distributional derivatives. Proc. Am. Math. Soc. 108, 691–702 (1990) Ambrosio, L., De Lellis, C., Mantegazza, C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9, 327–355 (1999) Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, New York (2000) Aviles, P., Giga, Y.: A mathematical problem related to the physical theory of liquid crystal configurations. In: Miniconference on Geometry and Partial Differential Equations, 2 (Canberra, 1986), vol. 12 of Proceedings of the Centre for Mathematics and its Applications. Austral. Nat. Univ., Canberra, pp. 1–16 (1987) Aviles, P., Giga, Y.: On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields. Proc. R. Soc. Edinb. Sect. A 129, 1–17 (1999) Benoit, J., Saxena, A., Lookman, T.: Bogomol’nyi decomposition for vesicles of arbitrary genus. J. Phys. A Math. Gen. 34, 9417–9423 (2001) Bluestein, I., Kamien, R.D.: Nonlinear effects in the TGB a phase. Europhys. Lett. (EPL) 59, 68–74 (2002) Bogomol’nyi, E.B.: The stability of classical solutions. Sov. J. Nucl. Phys. (Engl. Transl.) 24, 449 (1976) Brener, E.A., Marchenko, V.I.: Nonlinear theory of dislocations in smectic crystals: an exact solution. Phys. Rev. E 59, R4752–R4753 (1999) Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge (1995) Conti, S., De Lellis, C.: Sharp upper bounds for a variational problem with singular perturbation. Math. Ann. 338, 119–146 (2007) De Lellis, C.: An example in the gradient theory of phase transitions. ESAIM Control Optim. Calc. Var. 7, 285–289 (2002) De Lellis, C., Ignat, R.: A regularizing property of the 2d-eikonal equation. Commun. Partial Differ. Equ. 40, 1543–1557 (2015) De Lellis, C., Otto, F.: Structure of entropy solutions to the eikonal equation. J. Eur. Math. Soc. (JEMS) 5, 107–145 (2003) DeSimone, A., Müller, S., Kohn, R.V., Otto, F.: A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. Sect. A Math. 131, 833–844 (2001) DiDonna, B.A., Kamien, R.D.: Smectic phases with cubic symmetry: the splay analog of the blue phase. Phys. Rev. Lett. 89, 215504 (2002) DiDonna, B.A., Kamien, R.D.: Smectic blue phases: layered systems with high intrinsic curvature. Phys. Rev. E (3) 68, 041703 (2003) de Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., Englewood Cliffs (1976). (Translated from the Portuguese) Gennes, P.D., Prost, J.: The Physics of Liquid Crystals. International Series of Monographs on Physics (Oxford, England), vol. 83, 2nd edn. Clarendon Press, New York (1993) Ghiraldin, F., Lamy, X.: Optimal Besov differentiability for entropy solutions of the eikonal equation. Commun. Pure Appl. Math. 73, 317–349 (2020) Golubović, L., Wang, Z.-G.: Kardar–Parisi–Zhang model and anomalous elasticity of two- and three-dimensional smectic: a liquid crystals. Phys. Rev. E 49, 2567–2578 (1994) Helfrich, W.: Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals. J. Chem. Phys. 55, 839–842 (1971) Hurault, J.P.: Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields. J. Chem. Phys. 59, 2068–2075 (1973) Ignat, R.: Singularities of divergence-free vector fields with values into \({\mathbb{S}}^1\) or \({\mathbb{S}}^2\): applications to micromagnetics. Confluentes Mathematici 04, 1230001 (2012) Ignat, R.: Two-dimensional unit-length vector fields of vanishing divergence. J. Funct. Anal. 262, 3465–3494 (2012) Ignat, R., Merlet, B.: Lower bound for the energy of Bloch walls in micromagnetics. Arch. Ration. Mech. Anal. 199, 369–406 (2011) Ignat, R., Merlet, B.: Entropy method for line-energies. Calc. Var. Partial Differ. Equ. 44, 375–418 (2012) Ignat, R., Monteil, A.: A De Giorgi-type conjecture for minimal solutions to a nonlinear stokes equation. Commun. Pure Appl. Math. 73, 771–854 (2020) Ishikawa, T., Lavrentovich, O.D.: Dislocation profile in cholesteric finger texture. Phys. Rev. E 60, R5037–R5039 (1999) Jin, W., Kohn, R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10, 355–390 (2000) Kamien, R.D., Lubensky, T.C.: Minimal surfaces, screw dislocations, and twist grain boundaries. Phys. Rev. Lett. 82, 2892–2895 (1999) Kamien, R.D., Santangelo, C.D.: Smectic liquid crystals: materials with one-dimensional, periodic order. Geom. Dedicata 120, 229–240 (2006) Kléman, M.: Points, Lines and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media. Oxford Mathematical Monographs. Wiley, New York (1983) Kohn, R.V.: Energy-driven pattern formation. In: International Congress of Mathematicians, vol. I, Eur. Math. Soc., Zürich, pp. 359–383 (2007) Lamy, X., Lorent, A., Peng, G.: Rigidity of a non-elliptic differential inclusion related to the Aviles–Giga conjecture. Arch. Ration. Mech. Anal. 238, 383–413 (2020) Lorent, A.: A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity. ESAIM Control Optim. Calc. Var. 18, 383–400 (2012) Lorent, A.: A quantitative characterisation of functions with low Aviles Giga energy on convex domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(13), 1–66 (2014) Lorent, A., Peng, G.: Regularity of the eikonal equation with two vanishing entropies. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 481–516 (2018) Lorent, A., Peng, G.: Factorization for entropy production of the eikonal equation and regularity, arXiv e-prints, (2021). arXiv:2104.01467 Marconi, E.: Characterization of minimizers of Aviles–Giga functionals in special domains, arXiv e-prints, (2021). arXiv:2104.07125 Matsumoto, E.A., Santangelo, C.D., Kamien, R.D.: Smectic pores and defect cores. J. Interface Focus 2, 617–622 (2012) Mitrea, I., Mitrea, M., Wright, M.: Optimal estimates for the inhomogeneous problem for the bi-Laplacian in three-dimensional Lipschitz domains. J. Math. Sci. 172, 24–134 (2011) Murat, F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(5), 489–507 (1978) Murat, F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(8), 69–102 (1981) Novack, M., Yan, X.: Work in progress Novack, M., Yan, X.: Compactness and sharp lower bound for a 2d smectics model. J. Non. Sci. (2021) (to appear) Poliakovsky, A.: Upper bounds for singular perturbation problems involving gradient fields. J. Eur. Math. Soc. (JEMS) 9, 1–43 (2007) Poliakovsky, A.: A general technique to prove upper bounds for singular perturbation problems. J. Anal. Math. 104, 247–290 (2008) Poliakovsky, A.: On the \(\Gamma \)-limit of singular perturbation problems with optimal profiles which are not one-dimensional. Part I: The upper bound. Differ. Integral Equ. 26, 1179–1234 (2013) Prasad, M., Sommerfield, C.M.: Solutions of classical gauge field theories with spin and internal symmetry. Nucl. Phys. B 110, 153–172 (1976) Rivière, T., Serfaty, S.: Limiting domain wall energy for a problem related to micromagnetics. Commun. Pure Appl. Math. 54, 294–338 (2001) Rivière, T., Serfaty, S.: Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Differ. Equ. 28, 249–269 (2003) Santangelo, C.D.: Geometry and the nonlinear elasticity of defects in smectic liquid crystals. Liq. Cryst. Today 15, 11–18 (2006) Santangelo, C.D., Kamien, R.D.: Bogomol’nyi, Prasad, and Sommerfield configurations in smectics. Phys. Rev. Lett. 91, 045506 (2003) Santangelo, C.D., Kamien, R.D.: Curvature and topology in smectic: a liquid crystals. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, 2911–2921 (2005) Santangelo, C.D., Kamien, R.D.: Triply periodic smectic liquid crystals. Phys. Rev. E (3) 75, 011702 (2007) Smalyukh, I.I., Lavrentovich, O.D.: Anchoring-mediated interaction of edge dislocations with bounding surfaces in confined cholesteric liquid crystals. Phys. Rev. Lett. 90, 085503 (2003) Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101, 209–260 (1988) Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics: Heriot–Watt Symposium, vol. IV, vol. 39 of Res. Notes in Math., Pitman, Boston, Mass.-London, pp. 136–212 (1979) Tartar, L.: The compensated compactness method applied to systems of conservation laws. In: Systems of Nonlinear Partial Differential Equations (Oxford, 1982), vol. 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Reidel, Dordrecht, pp. 263–285 (1983) Tartar, L.: Compensation effects in partial differential equations. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 29, 395–453 (2005) Vol’pert, A.I.: Spaces BV and quasilinear equations. Mat. Sb. (N.S.) 73(115), 255–302 (1967)