Morpho-functional diversity in Diaphus spp. (Pisces: Myctophidae) from the central Atlantic Ocean: Ecological and evolutionary implications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdellaoui, 2017, Resource partitioning within major bottom fish species in a highly productive upwelling ecosystem, J. Mar. Syst., 173, 1, 10.1016/j.jmarsys.2017.03.012
Adams, 2013, Geomorph: an R package for the collection and analysis of geometric morphometric shape data, Methods Ecol. Evol., 4, 393, 10.1111/2041-210X.12035
Albouy, 2011, Predicting trophic guild and diet overlap from functional traits: statistics, opportunities, and limitations for marine ecology, Mar. Ecol. Prog. Ser., 436, 17, 10.3354/meps09240
Alwis, 1988, Feeding behaviour of Diaphus dumerilii in NW Africa with notes on its relation to other mycthophids in the area, Flødevigen Rapp., 1, 55
Angel, 2000, Quantification of diel vertical migration by micronektonic taxa in the northeast Atlantic, Hydrobiologia, 440, 161, 10.1023/A:1004115010030
Ariza, 2016, Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands, J. Mar. Syst., 157, 82, 10.1016/j.jmarsys.2016.01.004
Backus, 1977, Atlantic mesopelagic zoogeography, Mem. Sears Found. Mar. Res, 7, 266
Battaglia, 2014, Diet of the spothead lanternfish Diaphus metopoclampus (Cocco, 1829) (Pisces: Myctophidae) in the central Mediterranean Sea, Ital. J. Zool., 81, 530, 10.1080/11250003.2014.948500
de Busserolles, 2017, Seeing in the deep-sea: visual adaptations in lanternfishes, Philos. Trans. R. Soc. B, 372, 10.1098/rstb.2016.0070
de Busserolles, 2013, Eye-size variability in deep-sea lanternfishes (Myctophidae): an ecological and phylogenetic study, PLoS One, 8, e58519, 10.1371/journal.pone.0058519
de Busserolles, 2014, The influence of photoreceptor size and distribution on optical sensitivity in the eyes of Lanternfishes (Myctophidae), PLoS One, 9, e99957, 10.1371/journal.pone.0099957
de Busserolles, 2015, Spectral tuning in the eyes of deep-sea lanternfishes (Myctophidae): a novel sexually dimorphic intra-ocular filter, Brain Behav. Evol., 85, 77, 10.1159/000371652
Bellwood, 2010, Evolutionary history of the butterflyfishes (f: chaetodontidae) and the rise of coral feeding fishes, J. Evol. Biol., 23, 335, 10.1111/j.1420-9101.2009.01904.x
Bernal, 2015, Diet and feeding strategies of mesopelagic fishes in the western Mediterranean, Prog. Oceanogr., 135, 1, 10.1016/j.pocean.2015.03.005
Bianchi, 2013, Intensification of open-ocean oxygen depletion by vertically migrating animals, Nat. Geosci., 6, 545, 10.1038/ngeo1837
Bilge, 2013, Otolith size–fish size relations in the jewel lanternfish, lampanyctus crocodilus (Actinopterygii: Myctophiformes: Myctophidae), from deepwater environment of the southern Aegean Sea, Acta Ichthyol. Piscat., 43, 293, 10.3750/AIP2013.43.4.05
Bookstein, 1991
Boughman, 2002, How sensory drive can promote speciation, Trends Ecol. Evol., 17, 571, 10.1016/S0169-5347(02)02595-8
Brzobohaty, 2000, Diaphus otoliths of the European Neogene (Myctophidae, Teleostei), Bull. Inst. R. Sci. Nat. Belg. Sci. Terre, 70, 185
Campana, 1993, Stock discrimination using otolith shape analysis, Can. J. Fish. Aquat. Sci., 50, 1062, 10.1139/f93-123
Cardinale, 2004, Effects of sex, stock and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths, Can. J. Fish. Aquat. Sci., 61, 158, 10.1139/f03-151
Cartes, 2017, Recent reconstruction of deep-water macrofaunal communities recorded in continental margin sediments in the Balearic Basin, Deep-Sea Res. Part I, 125, 52, 10.1016/j.dsr.2017.04.016
Castonguay, 1991, Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination, Can. J. Fish. Aquat. Sci., 48, 296, 10.1139/f91-041
Clabaut, 2007, Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations, Evolution, 61, 560, 10.1111/j.1558-5646.2007.00045.x
Clarke, 1980, Diets of fourteen species of vertically migrating mesopelagic fishes in Hawaiian waters, Fish. Bull., 78, 619
Collar, 2009, Ecomorphology of centrarchid fishes, 70
Collins, 2008, Patterns in the distribution of myctophid fish in the northern Scotia Sea ecosystem, Polar Biol., 31, 837, 10.1007/s00300-008-0423-2
Collins, 2012, Latitudinal and bathymetric patterns in the distribution and abundance of mesopelagic fish in the Scotia Sea, Deep Sea Res. Part II, 59, 189, 10.1016/j.dsr2.2011.07.003
Cooper, 2009, Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches, BMC Evol. Biol., 9, 1
Cornejo, 2006, Distribution patterns of mesopelagic fishes with special reference to Vinciguerria lucetia Garman 1899 (Phosichthyidae: pisces) in he Humboldt Current Region off Peru, Mar. Biol., 149, 1519, 10.1007/s00227-006-0319-z
Cruz, 2004, Otolith size and their relationship with colour pattern and sound production, J. Fish. Biol., 65, 1512, 10.1111/j.0022-1112.2004.00558.x
D’Elia, 2016, Diel variation in the vertical distribution of deep-water scattering layers in the Gulf of Mexico, Deep-Sea Res. Part I, 115, 91, 10.1016/j.dsr.2016.05.014
Davis, 2014, Species-specific bioluminescence facilitates speciation in the deep sea, Mar. Biol., 161, 1139, 10.1007/s00227-014-2406-x
De Schepper, 2008, Morphology of the jaw system in trichiurids: trade-offs between mouth closing and biting performance, Zool. J. Linn. Soc., 152, 717, 10.1111/j.1096-3642.2008.00348.x
Deng, 2013, Interspecific variations of inner ear structure in the deep-sea fish family Melamphaidae, Anat. Rec., 296, 1064, 10.1002/ar.22703
Denton, 2014, Seven-locus molecular phylogeny of Myctophiformes (Teleostei; Scopelomorpha) highlights the utility of the order for studies of deep-sea evolution, Mol. Phylogenet. Evol., 76, 270, 10.1016/j.ympev.2014.02.009
Denton, 2015, A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae), Evolution, 69–9, 2425, 10.1111/evo.12743
Douglas, 1992, Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage, Oikos, 65, 213, 10.2307/3545012
Duarte-Neto, 2008, The use of sagittal otoliths indiscriminating stocks of common dolphinfish (Coryphaena hippurus) offnortheastern Brazil using multishape descriptors, ICES J. Mar. Sci., 65, 1144, 10.1093/icesjms/fsn090
Dumay, 2004, Functional groups of lagoon ish species in Languedoc Roussillon, southern France, J. Fish. Biol., 64, 970, 10.1111/j.1095-8649.2004.00365.x
Elias, 2012, Factors influencing progress toward ecological speciation, Int. J. Ecol., 2012, 1, 10.1155/2012/235010
Endler, 1992, Signals, signal conditions, and the direction of evolution, Am. Nat., 139, S125, 10.1086/285308
Eschmeyer, W.N., Fricke, R., van der Laan, R., 2016. Catalog of fishes: genera, species, references. [online versión]. 〈http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp〉.
Falk, 2015, Sensory-based niche partitioning in a multiple predator-multiple prey community, Proc. Biol. Sci., 282, 20150520, 10.1098/rspb.2015.0520
Fay, 2012, Fish hearing: new perspectives from two “senior” bioacousticians, Brain Behav. Evol., 792, 215, 10.1159/000338719
Ferry-Graham, 2010, Unusual kinematics and jaw morphology associated with piscivory in the poeciliid, Belonesox belizanus, Zoology, 113, 140, 10.1016/j.zool.2009.09.001
Fitch, 1968, Fish otoliths in cetacean stomachs and their importance in interpreting feeding habits, J. Fish. Res. Board Can., 25, 2561, 10.1139/f68-227
Frédérich, 2016, Trophic ecology of damselfishes, 153
Friendly, M., Fox, J., 2016. Visualizing generalized canonical discriminant and canonical correlation analysis (Version 0.7-2) [online]. Available from 〈https://cran.r-project.org/web/packages/candisc/candisc.pdf〉.
Gago, 1993, Morphology of the saccular otoliths of six species of lanternfishes of the genus Symbolophorus (Pisces: Myctophidae), Bull. Mar. Sci., 52, 949
Gartner, 1987, The lanternfishes (Pisces: Myctophidae) of the eastern Gulf of Mexico, Fish. Bull., 85, 81
Gauldie, 1988, Function, form and time-keeping properties of fish otoliths, Comp. Biochem. Physiol. Part A, 91, 395, 10.1016/0300-9629(88)90436-7
Gauldie, 2002, An eco-morphological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth, J. Fish. Biol., 60, 1204, 10.1111/j.1095-8649.2002.tb01715.x
Geange, 2011, A unified analysis of niche 421 overlap incorporating data of different types, Methods Ecol. Evol., 2, 175, 10.1111/j.2041-210X.2010.00070.x
Giménez, 2016, Relationships between otolith and fish size from Mediterranean and north-eastern Atlantic species to be used in predator–prey studies, J. Fish. Biol., 89, 2195, 10.1111/jfb.13115
Gjøsæter, 1987, Primary growth increments in otoliths of six tropical myctophid species, Biol. Oceanogr., 4, 359
Haddock, 2010, Bioluminescence in the sea, Ann. Rev. Mar. Sci., 2, 443, 10.1146/annurev-marine-120308-081028
Hammer, 2001, PAST: paleontological statistic software 430 package for education and data analysis, Paleontol. Electron., 4, 1
Hauser, 1995, Morphological and genetic differentiation of the African clupeid Limnothrissa miodon 34 years after its introduction to Lake Kivu, J. Fish. Biol., 47, 127, 10.1111/j.1095-8649.1995.tb06049.x
Herring, 2000, Species abundance, sexual encounter, and bioluminescent signalling in the deep sea, Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 1273, 10.1098/rstb.2000.0682
Higham, 2007, The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance, Integr. Comp. Biol., 47, 82, 10.1093/icb/icm021
Hjelm, 2000, Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability, Oecologia, 122, 190, 10.1007/PL00008846
Holliday, 2011, Incorporation of larval fishes into a developing anti-cyclonic eddy of the Leeuwin Current off south-western Australia, J. Plankton Res., 33, 1696, 10.1093/plankt/fbr064
Hopkins, 1998, Midwater fishes and shrimps as competitors and resource partitioning in low latitude oligotrophic ecosystems, Mar. Ecol. Prog. Ser., 164, 37, 10.3354/meps164037
Hopkins, 1996, The trophic structure and predation impact of a low latitude midwater fish assemblage, Prog. Oceanogr., 38, 205, 10.1016/S0079-6611(97)00003-7
Hulley, 1981, Results of the research cruise of FRV Walter Herwig to South America. family Myctophidae (Osteichthyes, Myctophiformes), Arch. Fisch., 31, 1
Hulley, 1984, Myctophidae, 429
Hulley, 2016, Myctophidae, 3, 1860
Ingram, 2011, Speciation along a depth gradient in a marine adaptive radiation, Proc. R. Soc. Lond. B, 278, 613, 10.1098/rspb.2010.1127
Kawaguchi, 1978, Taxonomy and distribution of the lanternfishes, genus Diaphus (Pisces, Myctophidae) in the western Pacific, eastern Indian oceans and the southeast Asian seas, Bull. Ocean Res. Inst. Univ. Tokyo, 10, 1
Kéver, 2014, Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus), J. Exp. Biol., 217, 2517, 10.1242/jeb.105254
Kinzer, 1985, Vertical distribution and feeding patterns of midwater fish in the central equatorial Atlantic: I. Myctophidae, Mar. Biol., 85, 313, 10.1007/BF00393252
Klingenberg, 2016, Size, shape, and form: concepts of allometry in geometric morphometrics, Dev. Genes Evol., 226, 113, 10.1007/s00427-016-0539-2
Klingenberg, 1996, A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae), Biol. J. Linn. Soc., 59, 143, 10.1111/j.1095-8312.1996.tb01459.x
Koubbi, 2011, Ecoregionalization of myctophid fish in the Indian sector of the Southern Ocean: results from generalized dissimilarity models, Deep-Sea Res. Part II, 58, 170, 10.1016/j.dsr2.2010.09.007
Kumar, 2017, Functional approach reveals low niche overlap among common deep-sea fishes from the south-eastern Arabian Sea, Deep-Sea Res. Part I, 119, 16, 10.1016/j.dsr.2016.11.011
Lampert, 1989, The adaptive significance of diel vertical migration of zooplankton, Funct. Ecol., 3, 21, 10.2307/2389671
Layman, 2005, Body size and trophic position in a diverse tropical food web, Ecology, 86, 2530, 10.1890/04-1098
Liem, 1980, Adaptive significance of intra-and interspecific differences in the feeding repertoires of cichlid fishes, Am. Zool., 20, 295, 10.1093/icb/20.1.295
Lin, 2017, Tortonian teleost otoliths from northern Italy: taxonomic synthesis and stratigraphic significance, Eur. J. Taxon., 322, 1
Linde, 2004, Differential correlates of diet and phylogeny on the shape of the premaxilla and anterior tooth in sparid fishes (Perciformes: Sparidae), J. Evol. Biol., 17, 941, 10.1111/j.1420-9101.2004.00763.x
Linkowski, 1991, Otolith microstructure and growth patterns during the early life history of lanternfishes (Family Myctophidae), Can. J. Zool., 69, 1777, 10.1139/z91-247
Lombarte, 1992, Changes in otolith area: sensory area ratio with body size and depth, Environ. Biol. Fish., 33, 405, 10.1007/BF00010955
Lombarte, 2007, Otolith size trends in marine fish communities from different depth strata, J. Fish. Biol., 71, 53, 10.1111/j.1095-8649.2007.01465.x
Lombarte, 1993, Otolith size changes with body growth, habitat depth and temperature, Environ. Biol. Fish., 37, 297, 10.1007/BF00004637
Lombarte, 2003, Specific Merluccius otolith growth patterns related to phylogenetic and environmental factors, J. Mar. Biol. Assoc. U.K., 83, 277, 10.1017/S0025315403007070h
Lombarte, 2010, Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae, Environ. Biol. Fish., 89, 607, 10.1007/s10641-010-9673-2
Lombarte, 2018, Identifying sagittae otoliths of Mediterranean Sea gobies: variability among phylogenetic lineages, J. Fish Biol., 92, 1768, 10.1111/jfb.13615
Lombarte, A., Tuset, V.M., 2015. Morfometría de otolitos/ Mofometría de otólitos. In: Volpedo, A., Vaz dos Santos, A.M. (Eds.), Métodos de Estudios Con Otolitos: Principios y Aplicaciones/Métodos de Estudos Com Otólitos: Princípios e Aplicações. PIESCE-SPU, pp. 59–91/269–301.
Loreau, 2001, Partitioning selection and complementarity in biodiversity experiments, Nature, 412, 72, 10.1038/35083573
MacArthur, 1967, The limiting similarity, convergence, and divergence of coexisting species, Am. Nat., 101, 377, 10.1086/282505
Mantel, 1967, The detection of disease clustering and a generalized regression approach, Cancer Res., 27, 209
Marshall, 1996, The lateral line system of three deep-sea fish, J. Fish. Biol., 49, 239, 10.1111/j.1095-8649.1996.tb06079.x
Martin, 2016, Patterns of phenotypic variation in the mouth size of lanternfishes (Teleostei: Myctophiformes), Copeia, 104, 795, 10.1643/CI-15-345
Mason, 2008, Evidence that niche specialisation explains species–energy relationships in lake fish communities, J. Anim. Ecol., 77, 285, 10.1111/j.1365-2656.2007.01350.x
McClain-Counts, 2017, Trophic structure of mesopelagic fishes in the Gulf of Mexico revealed by gut content and stable isotope analyses, Mar. Ecol., 38, e12449, 10.1111/maec.12449
Meillat, M., 2012. Essais du chalut mésopélagos pour le programme MYCTO 3D – MAP de l’IRD, à bord du Marion Dufresne. IFREMER Rapport de mission Marion Dufresne. R.INT.RBE/STH/LTH 2012–05.
Mittelbach, 2007, Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography, Ecol. Lett., 10, 315, 10.1111/j.1461-0248.2007.01020.x
Mitteroecker, 2011, Classification, linear discrimination, and the visualization of selection gradients in modern morphometrics, Evol. Biol., 38, 100, 10.1007/s11692-011-9109-8
Montaña, 2013, Evolutionary convergence in Neotropical cichlids and Nearctic centrarchids: evidence from morphology, diet, and stable isotope analysis, Biol. J. Linn. Soc., 109, 146, 10.1111/bij.12021
Monteiro, 2005, Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes, Fish. Res., 74, 253, 10.1016/j.fishres.2005.03.002
Mookerji, 2004, Food partitioning between coexisting Atlantic salmon and brook trout in the Sainte-Marguerite River ecosystem, Quebec, J. Fish. Biol., 64, 680, 10.1111/j.1095-8649.2004.00333.x
Moser, 1974, Role of larval stages in systematic investigations of marine teleosts: the Myctophidae, a case study, Fish. Bull. U.S., 72, 391
Moser, 1984, Myctophidae: development, 1, 218
Mouillot, 2005, Functional regularity: a neglected aspect of functional diversity, Oecologia, 142, 353, 10.1007/s00442-004-1744-7
Nafpaktitis, 1995, Four new species of the lanternfish genus Diaphus (Myctophidae) from the Indo-Pacific, N. Z. J. Mar. Freshw. Res., 29, 335, 10.1080/00288330.1995.9516668
Nafpaktitis, 1978, Systematics and distribution of lanternfishes of the genera Lobianchia and Diaphus (Myctophidae) in the Indian Ocean, Nat. Hist. Mus. Los Angel. Cty. Sci. Bull., 30, 1
Nafpaktitis, 1968, Review of the lanternfish genus Lampadena with a description of a new species, Los Angel. Cty. Mus. Contr. Sci., 138, 1
Nafpaktitis, 1977, Family Myctophidae, 13
Nagelkerke, 2014, Trophic niche-space imaging, using resource and consumer traits, Theor. Ecol., 7, 423, 10.1007/s12080-014-0229-5
Nelson, 2016
Nishimoto, 2010, Otolith elemental signatures reflect residency in coastal water masses, Environ. Biol. Fish., 89, 341, 10.1007/s10641-010-9698-6
Nyström, 2006, Redundancy and response diversity of functional groups: implications for the resilience of coral reefs, Ambio, 3, 30, 10.1579/0044-7447-35.1.30
Oksanen, 2016, vegan: community ecology package, R. Package Version, 2, 3
Olivar, 1995, Early development of Diaphus spp. (Pisces Myctophidae) of the Agulhas Current, S. Afr. J. Mar. Sci., 16, 129, 10.2989/025776195784156485
Olivar, 2012, Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean, Deep-Sea Res. I, 62, 53, 10.1016/j.dsr.2011.12.014
Olivar, 2016, The contribution of migratory mesopelagic fishes to neuston fish assemblages across the Atlantic, Indian Pac. Oceans Mar. Freshw. Res., 67, 1114, 10.1071/MF14391
Olivar, 2017, Mesopelagic fishes across the tropical and equatorial Atlantic: biogeographical and vertical patterns, Prog. Oceanogr., 151, 116, 10.1016/j.pocean.2016.12.001
Olivar, 2018, Trophic position of lanternfishes (Pisces: myctophidae) of the tropical and equatorial Atlantic estimated using stable isotopes, ICES J. Mar. Sci.
Pakhovmov, 1996, Prey composition and daily rations of myctophid fishes in the Southern Ocean, Mar. Ecol. Prog. Ser., 134, 1, 10.3354/meps134001
Parisi-Baradad, 2005, Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation, Mar. Freshw. Res., 56, 795, 10.1071/MF04162
Paxton, 1972, Osteology and relationships of the lanternfishes (family Mycthopidae), Bull. Nat. Hist. Mus., 13, 1
Paxton, 2000, Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence?, Philos. Trans. R. Soc. Lond. Ser. B, 355, 1299, 10.1098/rstb.2000.0688
Pearcy, 1977, Vertical distribution and migration of oceanic micronekton off Oregon, Deep-Sea Res., 24, 223, 10.1016/S0146-6291(77)80002-7
Podrazhanskaya, 1993, Feeding habits of mesopelagic species of fish and estimation of plankton graze in the Northwest Atlantic, NAFO Sci. Counc. Stud., 19, 79
Popper, 1982, The morphology and evolution of the ear in actinopterygian fishes, Am. Zool., 22, 311, 10.1093/icb/22.2.311
Popper, 1993, Sound detection and processing by fish: critical review and major research questions, Brain Behav. Evol., 41, 14, 10.1159/000113821
Popper, 2000, Structure–function relationships in fish otolith organs, Fish. Res., 46, 15, 10.1016/S0165-7836(00)00129-6
Popper, 1981, Structure and function of the ear in the marine catfish, Arius felis, J. Comp. Physiol., 144, 27, 10.1007/BF00612794
Popper, 2005, Why otoliths? Insights from inner ear physiology and fisheries biology, Mar. Freshw. Res., 56, 497, 10.1071/MF04267
Price, 2011, Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes, Ecol. Lett., 14, 462, 10.1111/j.1461-0248.2011.01607.x
Quinn, 2005
Ramcharitar, 2006, Bioacoustics of the family Sciaenidae (croakers and drumfishes), Trans. Am. Fish. Soc., 135, 1409, 10.1577/T05-207.1
Ray, 1950, The peripheral nervous system of lampanyctus leucopsaurus, J. Morphol., 87, 61, 10.1002/jmor.1050870104
Reichenbacher, 2007, Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, †Prolebias), J. Morphol., 268, 898, 10.1002/jmor.10561
Rice, 2013, Does functional redundancy stabilize fish communities?, ICES J. Mar. Sci., 70, 734, 10.1093/icesjms/fst071
Robinson, 1996, Genetic variation and phenotypic plasticity in a trophically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus), Evol. Ecol., 10, 1, 10.1007/BF01237711
Roe, 1984, The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 5. Vertical migrations and feeding of fish, Prog. Oceanogr., 13, 389, 10.1016/0079-6611(84)90014-4
Rohlf, 2004
Rohlf, 1990, Extensions of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool., 39, 40, 10.2307/2992207
Sadighzadeh, 2014, An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology, Sci. Mar., 78, 353, 10.3989/scimar.03982.16C
Safi, 2010, Implications of sensory ecology for species coexistence: biased perception links predator diversity to prey size distribution, Evol. Ecol., 24, 703, 10.1007/s10682-009-9326-0
Scharf, 2000, Predator size–prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth, Mar. Ecol. Prog. Ser., 208, 229, 10.3354/meps208229
Schmitz, O., 2017. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions. F1000Research 6, 1767.
Schwarzhans, 2013, A comparative morphological study of the recent otoliths of the genera Diaphus, Idiolychnus and Lobianchia (Myctophidae), Palaeo Ichthyol., 13, 41
Schwarzhans, 2014, Head and otolith morphology of the genera Hymenocephalus, Hymenogadus and Spicomacrurus (Macrouridae), with the description of three new species, Zootaxa, 3888, 1, 10.11646/zootaxa.3888.1.1
Schwarzhans, 2013, Otoliths of the Myctophidae from the Neogene of of tropical America, Palaeo Ichthyol., 13, 83
Schwarzhans, 2017, The origination and rise of teleost otolith diversity during the Mesozoic, Res. Knowl., 3, 5
Sibbing, 2001, Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics, Rev. Fish. Biol. Fish., 10, 393, 10.1023/A:1012270422092
Siemers, 2006, Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae), Behav. Ecol. Socio, 59, 373, 10.1007/s00265-005-0060-5
Silvertown, 2004, Plant coexistence and the niche, Trends Ecol. Evol., 19, 605, 10.1016/j.tree.2004.09.003
Smale, 1995, Otolith atlas of Southern African marine fishes, JLB Smith Inst. Ichthyol., 1, 1
Stransky, 2008, Separation of Norwegian coastal codand Northeast Arctic cod by outer otolith shape analysis, Fish. Res., 90, 26, 10.1016/j.fishres.2007.09.009
Sutton, 2013, Vertical ecology of the pelagic ocean: classical patterns and new perspectives, J. Fish. Biol., 83, 1508, 10.1111/jfb.12263
Sutton, 2008, Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system, Deep-Sea Res. Part II, 55, 161, 10.1016/j.dsr2.2007.09.013
Sutton, 2010, Diversity and community structure of pelagic fishes to 5000 m depth in the Sargasso Sea, Deep-Sea Res. Part II, 57, 2220, 10.1016/j.dsr2.2010.09.024
Tanaka, 2013, Feeding ecology of two lanternfishes Diaphus garmani and Diaphus chrysorhynchus, J. Fish. Biol., 82, 1011, 10.1111/jfb.12051
Thieren, 2016, Scutes for sturgeon size reconstruction: traditional and geometric morphometric techniques applied to Acipenser sturio and A. oxyrinchus, Archaeofauna, 25, 15, 10.15366/archaeofauna2016.25.002
Tracey, 2006, Application of elliptical Fourier analysis ofotolith form as a tool for stock identification, Fish. Res., 77, 138, 10.1016/j.fishres.2005.10.013
Turner, 2009, Vision in lanternfish (Myctophidae): adaptations for viewing bioluminescence in the deep-sea, Deep Sea Res. Part I, 56, 1003, 10.1016/j.dsr.2009.01.007
Tuset, 2008, Otolith atlas for the western Mediterranean, north and central eastern Atlantic, Sci. Mar., 72S, 7
Tuset, 2015, Otolith patterns of rockfishes from the northeastern pacific, J. Morphol., 276, 458, 10.1002/jmor.20353
Tuset, 2016, Testing otolith morphology for measuring marine fish biodiversity, Mar. Freshw. Res., 67, 1037, 10.1071/MF15052
Tuset, 2016, Otolith shape lends support to the sensory drive hypothesis in rockfishes, J. Evol. Biol., 29, 2083, 10.1111/jeb.12932
Tyler, 1975, The feeding of three species of lanternfishes (family Myctophidae) off Oregon. USA, Mar. Biol., 32, 7, 10.1007/BF00395156
Tytell, 2010, Disentangling the functional roles of morphology and motion in the swimming of fish, Integr. Comp. Biol., 50, 1140, 10.1093/icb/icq057
Valls, 2014, Trophic structure of mesopelagic fishes in the western Mediterranean based on stable isotopes of carbon and nitrogen, J. Mar. Syst., 138, 160, 10.1016/j.jmarsys.2014.04.007
Videler, 1993
Villéger, 2010, Contrasted changes in taxonomic and functional diversity of tropical fish communities after habitat degradation, Ecol. Appl., 20, 1512, 10.1890/09-1310.1
Volpedo, 2003, Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine, Fish. Res., 60, 551, 10.1016/S0165-7836(02)00170-4
Volpedo, 2008, Ecomorphological patterns of the sagitta of Antarctic fish, Polar Biol., 31, 635, 10.1007/s00300-007-0400-1
Wainwright, 2007, Suction feeding mechanics, performance, and diversity in fishes, Integr. Comp. Biol., 47, 96, 10.1093/icb/icm032
Wainwright, 2007, Functional versus morphological diversity in macroevolution, Annu. Rev. Ecol. Evol. Syst., 38, 381, 10.1146/annurev.ecolsys.38.091206.095706
Wainwright, 1995, Predicting patterns of prey use from morphology of fishes, Environ. Biol. Fishes, 44, 98, 10.1007/BF00005909
Wainwright, 2002, Ecomorphology of locomotion in labrid fishes, Environ. Biol. Fish., 65, 47, 10.1023/A:1019671131001
Wainwright, 2005, Many-to-one mapping of form to function: a general principle in organismal design?, Integr. Comp. Biol., 45, 256, 10.1093/icb/45.2.256
Walker, 2013, Body fineness ratio as a predictor of maximum prolonged-swimming speed in coral reef fishes, PLoS One, 8, e75422, 10.1371/journal.pone.0075422
Watanabe, 2004, Feeding habits of neon flying squid Ommastraphes bartramii in the transitional region of the central North Pacific, Mar. Ecol. Prog. Ser., 266, 173, 10.3354/meps266173
Webb, 1975, Acceleration performance of rainbow trout, Salmo gairdneri, and green sunfish, Lepomis cyanellus, J. Exp. Biol., 63, 451, 10.1242/jeb.63.2.451
Webb, 1984, Body form, locomotion and foraging in aquatic vertebrates, Am. Zool., 24, 107, 10.1093/icb/24.1.107
Webster, 2010, A practical introduction to landmark-based geometric morphometrics, 163
Winemiller, 1995, Fish ecology, 2, 49
Winlker, 2017, Diet reveals linkes between morphology ad foraging in a cryptic temperate reef fish, Ecol. Evol., 7, 1124
Wisner, R., 1976. The taxonomy and distribution of lanternfishes (family Myctophidae) of the eastern Pacific Ocean. – Navy Ocean Res. & Develop. Activity, 3, pp. 1–229.
Zeldicth, 2012
Zelditch, 2003, The ontogenic dynamics of shape disparity, Paleobiology, 29, 139, 10.1666/0094-8373(2003)029<0139:TODOSD>2.0.CO;2