Critical Phenomena in Gravitational Collapse

Springer Science and Business Media LLC - Tập 2 - Trang 1-58 - 1999
Carsten Gundlach1,2
1Enrico Fermi Institute, University of Chicago, Chicago, USA
2Faculty of Mathematical Studies, University of Southampton, Southampton, UK

Tóm tắt

As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term “critical phenomena”. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

Tài liệu tham khảo

Abrahams, A.M., and Evans, C.R., “Critical behavior and scaling in vacuum axisymmetric gravitational collapse”, Phys. Rev. Lett., 70, 2980–2983, (1993). 2.2, 4.6, 4.6.1 Abrahams, A.M., and Evans, C.R., “Universality in axisymmetric vacuum collapse”, Phys. Rev. D, 49, 3998–4003, (1994). 2.2, 7 Argyres, P.C., “Contributions from the G1 Working Group at the APS Summer Study on Particle and Nuclear Astrophysics and Cosmology in the Next Millennium”, (December, 1994), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lan.gov/abs/astro-ph/9412046. 5.2 Ayal, S., and Piran, T., “Spherical collapse of a mass-less scalar field with semi-classical corrections”, Phys. Rev. D, 56, 4768, (1997). For a related online version see: S. Ayal, et al., (April, 1997), http://xxx.lanl.gov/abs/gr-qc/9704027. 5.5 Barenblatt, G., and Zel’dovich, Ya.B., “Self-similar solutions as intermediate asymptotics”, Annu. Rev. Fluid Mech., 4, 285, (1972). 2 Barenblatt, G.I., Similarity, Self-Similarity and Intermediate Asymptotics, (Plenum Press, New York and London, 1979). 2, 3.2 Barenblatt, G.I., Dimensional Analysis, (1987). 2 Bartnik, R., and McKinnon, J., “Particle-like solutions of the Einstein-Yang-Millls equations”, Phys. Rev. Lett., 61, 141, (1988). 2.2, 4.1 Bicknell, G.V., and Henriksen, R.N., “Self-similar growth of primordial black holes, I. Stiff equation of state”, Astrophys. J., 219, 1043, (1978).3.2 Bizoń, P., “Colored black holes”, Phys. Rev. Lett., 64, 2844–2847, (1990).2.2 Bizoń, P., “How to Make a Tiny Black Hole?”, Acta Cosmologica, 22, 81, (1996). For a related online version see: P. Bizoń, (1996), http://xxx.lanl.gov/abs/gr-qc/9606060. 1.3 Bizoń, P., and Chmaj, T., “Remark on formation of colored black holes via fine tuning”, (June, 1999), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9906070. 4.1 Bizoń, P., and Chmaj, T., “Critical collapse of Skyrmions”, Phys. Rev. D, 58, 041501, (1998). For a related online version see: P. Bizoń, et al., (1998), http://xxx.lanl.gov/abs/gr-qc/9801012. 2.2, 4.1 Bizoń, P., and Chmaj, T., “First order phase transitions in gravitational collapse”, Acta Phys. Pol. B, 29, 1071, (1998). For a related online version see: P. Bizoń, et al., (1998), http://xxx.lanl.gov/abs/gr-qc/9802002. 4.1 Bizoń, P., Chmaj, T., and Tabor, Z., “On Equivalence of Critical Collapse of Non-Abelian Field”, Phys. Rev. D, 59, 104003, (1999). For a related online version see: P. Bizońh, et al., (1999), http://xxx.lanl.gov/abs/gr-qc/9901039. 2.2, 4.3 Bogoyavlenskiĭ, O.I., “General relativistic self-similar solutions with a spherical shock wave”, Sov. Phys. JETP, 46, 633, (1978). 3.2 Bose, S., Parker, L., and Peleg, Y., “Predictability and semiclassical approximation at the onset of black hole formation”, Phys. Rev. D, 54, 7490–7505, (1996). For a related online version see: S. Bose, et al., (1996), http://xxx.lanl.gov/abs/hep-th/9606152. 8 Brady, P., “Does scalar field collapse produce ‘zero mass’ black holes?”, Class. Quantum Grav. , 11, 1255, (1994). For a related online version see: P. Brady, (1994), http://xxx.lanl.gov/abs/gr-qc/9402023. 4.5, 5.3 Brady, P., “Self-similar scalar field collapse: naked singularities and critical behavior”, Phys. Rev. D, 51, 4168, (1995). For a related online version see: P. Brady, (1994), http://xxx.lanl.gov/abs/gr-qc/9409035. 3.2 Brady, P., Gundlach, C., and Neilsen, D., in preparation. 4.2 Brady, P.R., and Cai, M.J., “Critical phenomena in gravitational collapse”, (December, 1998), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9812071. to appear in Proceedings of 8th Marcel Grossmann Conference, (World Scientific, Singapore). 1.3 Brady, P.R., Chambers, C.M., and Gonçalves, S.M.C.V., “Phases of massive scalar field collapse”, Phys. Rev. D, 56, 6057–6061, (1997). For a related online version see: P.R. Brady, et al., (1997), http://xxx.lanl.gov/abs/gr-qc/9709014. 2.2, 4, 4.3, 4.3 Brady, P.R., and Ottewill, A.C., “Quantum corrections to critical phenomena in gravitational collapse”, Phys. Rev. D, 58, 024006, (1998). For a related online version see: P.R. Brady, et al., (1998), http://xxx.lanl.gov/abs/gr-qc/9804058. 8 Bricmont, J., and Kupiainen, A., “Renormalizing partial differential equations”, in Rivasseau, V., ed., Constructive Physics, Lecture Notes in Physics, 83–115, (Springer-Verlag, Berlin, 1995). For a related online version see: J. Bricmont, et al., (1994), http://xxx.lanl.gov/abs/chao-dyn/9411015. 5.2 Brodbeck, O., Heusler, M., Straumann, N., and Volkov, M., “Rotating solitons and non-rotating, non-static black holes”, Phys. Rev. Lett., 79, 4310, (1997). For a related online version see: O. Brodbeck, et al., (1997), http://xxx.lanl.gov/abs/gr-qc/9706064. 4 Burko, L.M., “Comment on the Roberts solution for the spherically-symmetric Einstein-scalar field equations”, Gen. Relativ. Gravit., 29, 259, (1997). For a related online version see: L.M. Burko, (1996), http://xxx.lanl.gov/abs/gr-qc/9608061. 5.3 Cahill, M.E., and Taub, A.H., “Spherically symmetric similarity solutions of the Einstein equations for a perfect fluid”, Commun. Math. Phys., 21, (1969). 3.2 Carr, B.J., and Coley, A.A., “Self-similarity in general relativity”, (June, 1998), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9806048. 3.2 Carr, B.J., Coley, A.A., Goliath, M., Nilsson, U.S., and Uggla, C., “Critical phenomena and a new class of self-similar spherically symmetric perfect-fluid solutions”, (January, 1999), http://xxx.lanl.gov/abs/gr-qc/9901031. 3.2 Carr, B.J., and Henriksen, R.N., “On the nature of the self-similar critical solution”, in preparation. 3.2 Carter, B., and Henriksen, R.N., “A covariant characterization of kinematic self-similarity”, Ann. Phys. (Paris) Suppl., 14, 47, (1989). 3.2 Chen, L.-Y., and Goldenfeld, N., “Numerical renormalization group calculations for similarity solutions and traveling waves”, Phys. Rev. E, 51, 5577–5581, (1995). 5.2 Chen, L.-Y., Goldenfeld, N., and Oono, Y., “Renormalization-group theory for the modified porous-medium equation”, Phys. Rev. D, 44, 6544–6550, (1991). 5.2 Chiba, T., and Siino, M., “Disappearance of black hole criticality in semi-classical general relativity”, Mod. Phys. Lett. A, 12, 709, (1997). 5.5 Choptuik, M.W., personal communication. 2.2, 4.2 Choptuik, M.W., “‘Critical’ behavior in massless scalar field collapse”, in d’Inverno, R., ed., Approaches to Numerical Relativity, (1992). 2.2, 3.2 Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70, 9, (1993). 1.2, 2.2, 3.2 Choptuik, M.W., “Critical behavior in scalar field collapse”, in D. Hobill, et al., ed., Deterministic chaos in general relativity, 155, (Plenum Press, New York, 1994). 1.2, 1, 2.2, 3.2, 4.3 Choptuik, M.W., “The (unstable) threshold of black hole formation”, in Dadhich, N., and Narlikar, J., eds., Proceedings of the GR-15 Conference in Pune, 67–85, (IUCAA, Pune, India, 1998). For a related online version see: M.W. Choptuik, (1998), http://xxx.lanl.gov/abs/gr-qc/9803075. 1.3 Choptuik, M.W., Chmaj, T., and Bizoń, P., “Critical behavior in gravitational collapse of a Yang-Mills field”, Phys. Rev. Lett., 77, 424, (1996). For a related online version see: M.W. Choptuik, et al., (1996), http://xxx.lanl.gov/abs/gr-qc/9603051. 2.2, 4.1, 4.3 Choptuik, M.W., Hirschmann, E.W., and Liebling, S.L., “Instability of an ‘Approximate black hole”’, Phys. Rev. D, 55, 6014, (1997). For a related online version see: M.W. Choptuik, et al., (1997), http://xxx.lanl.gov/abs/gr-qc/9701011. 4 Choptuik, M.W., Hirschmann, E.W., and Marsa, R.L., “New critical behavior in Einstein-Yang-Mills collapse”, (March, 1999), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9903081. 2.2, 5.1 Christodoulou, D., “Violation of cosmic censorship in the gravitational collapse of a dust cloud”, Commun. Math. Phys., 93, 17, (1984). 2.2 Christodoulou, D., “The problem of a self-gravitating scalar field”, Commun. Math. Phys., 105, 337–361, (1986). 1 Christodoulou, D., “A mathematical theory of gravitational collapserd,Commun. Math. Phys., 109, 613–647, (1987). 1.2 Christodoulou, D., “The formation of black holes and singularities in spherically symmetric gravitational collapse”, Commun. Pure Appl. Math., 44, 339–373, (1991). 1.2, 1 Christodoulou, D., “Bounded variation solutions of the spherically symmetric Einstein-scalar field equations”, Commun. Pure Appl. Math., 46, 1131–1220, (1993). 1.2, 1 Christodoulou, D., “Examples of naked singularity formation in the gravitational collapse of a scalar field”, Ann. Math., 140, 607, (1994). 1.2 Christodoulou, D., “The instability of naked singularities in the gravitational collapse of a scalar field”, Ann. Math., 149, 183–217, (1999). 1.2, 4.5 Coley, A.A., “Kinematic self-similarity”, Class. Quantum Grav., 14, 87, (1997). For a related online version see: A.A. Coley, (1996), http://xxx.lanl.gov/abs/gr-qc/9610061. 3.2 Eardley, D.M., Hirschmann, E.W., and Horne, J.H., “S-Duality at the black hole threshold in gravitational collapse”, Phys. Rev. D, 52, 5397, (1995). For a related online version see: D.M. Eardley, et al., (1995), http://xxx.lanl.gov/abs/gr-qc/9505041. 2.2, 4.2 Evans, C., private communication. 3.2 Evans, C.R., and Coleman, C.S., “Critical phenomena and self-similarity in the gravitational collapse of radiation fluid”, Phys. Rev. Lett., 72, 1782, (1994). 2.2, 3.2, 3.2, 3.3, 4.6.2 Foglizzo, T., and Henriksen, R.N., “General relativistic collapse of homothetic ideal gas spheres and planes”, Phys. Rev. D, 48, 4645, (1992). 3.2 Frolov, A.V., “Continuous self-similarity breaking in critical collapse”, (August, 1999), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9908046. 5.3 Frolov, A.V., “Perturbations and critical behavior in the self-similar gravitational collapse of a massless scalar field”, Phys. Rev. D, 56, 6433–6438, (1997). For a related online version see: A.V. Frolov, (1997), http://xxx.lanl.gov/abs/gr-qc/9704040. 5.3 Frolov, A.V., “Critical Collapse Beyond Spherical Symmetry: General Perturbations of the Roberts Solution”, Phys. Rev. D, 59, 104011, (1999). For a related online version see: A.V. Frolov, (1998), http://xxx.lanl.gov/abs/gr-qc/9811001. 5.3 Garfinkel, D., “Choptuik scaling in null coordinates”, Phys. Rev. D, 51, 5558–5561, (1995). For a related online version see: D. Garfinkel, http://xxx.lanl.gov/abs/gr-qc/9412008. 1 Garfinkel, D., “Choptuik scaling and the scale invariance of Einstein’s equation”, Phys. Rev. D, 56, 3169–3173, (1997). For a related online version see: D. Garfinkel, http://xxx.lanl.gov/abs/gr-qc/9612015. 5.2 Garfinkel, D., Cutler, C., and Duncan, G.C., “Choptuik scaling in six dimensions”, (August, 1999), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9908044. 2.2 Garfinkel, D., and Duncan, G.C., “Scaling of curvature in sub-critical gravitational collapse”, Phys. Rev. D, 58, 064024, (1998). For a related online version see: D. Garfinkel, et al., http://xxx.lanl.gov/abs/gr-qc/9802061. 3 Garfinkel, D., and Gundlach, C., “Symmetry-seeking spacetime coordinates”, Class. Quantum Grav., 16, 4111–4123, (1999). For a related online version see: D. Garfinkel, et al., (August, 1999), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9908016. 5.2 Garfinkel, D., Gundlach, C., and Martín-García, J.M., “Angular momentum near the black hole threshold in scalar field collapse”, Phys. Rev. D, 59, 104012, (1999). For a related online version see: D. Garfinkel, et al., http://xxx.lanl.gov/abs/gr-qc/9811004. 4.7.2 Garfinkel, D., and Meyer, K., “Scale invariance and critical gravitational collapse”, Phys. Rev. D, 59, 064003, (1999). For a related online version see: D. Garfinkel, et al., http://xxx.lanl.gov/abs/gr-qc/9806052. 5.2 Gibbons, G., personal communication. 3.2 Giddings, S.B., “Quantum mechanics of black holes”, (December, 1994), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/hep-th/9412138. Lectures presented at the 1994 Trieste Summer School in High Energy Physics and Cosmology. 5.5 Goldenfeld, N., Lectures on Phase Transitions and the Renormalisation Group, (Addison-Wesley, 1992). 5.2 Goldwirth, D.S., and Piran, T., “Gravitational collapse of massless scalar field and cosmic censorship”, Phys. Rev. D, 36, 3575–3581, (1987). 3.2 Goode, S.W., Coley, A.A., and Wainwright, J., “The isotropic singularity in cosmology”, Class. Quantum Grav., 9, 445, (1992). 4.5 Gundlach, C., “Critical gravitational collapse of a perfect fluid with p = kρ: Nonspherical perturbations”, (June, 1999), [Online Los Alamos Pre-pint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9906124. submitted to Phys. Rev. D. 2.2, 4.7.2 Gundlach, C., “The Choptuik spacetime as an eigenvalue problem”, Phys. Rev. Lett., 75, 3214, (1995). For a related online version see: C. Gundlach,http://xxx.lanl.gov/abs/gr-qc/9507054. 2.2, 3.2, 4.4.2, 5.3 Gundlach, C., “Critical phenomena in gravitational collapse”, in Mathematics of Gravitation, Part I, Banach Center Publications, 143, (Institute of Mathematics, Polish Academy of Science, Warszawa, 1997). For a related online version see: C. Gundlach, http://xxx.lanl.gov/abs/gr-qc/9606023. 1.3, 4.5 Gundlach, C., “Echoing and scaling in Einstein-Yang-Mills critical collapse”, Phys. Rev. D, 55, 6002, (1997). For a related online version see: C. Gundlach, http://xxx.lanl.gov/abs/gr-qc/9610069. 2.2, 4.3 Gundlach, C., “Understanding critical collapse of a scalar field”, Phys. Rev. D, 55, 695, (1997). 2.2, 3, 3.2, 3.2, 3.3, 3.3, 4.2, 4.5 Gundlach, C., “Angular momentum at the black hole threshold”, Phys. Rev. D, 57, 7080–7083, (1998). For a related online version see: C. Gund-lach, http://xxx.lanl.gov/abs/gr-qc/9711079. 4.7.2 Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2, 1–49, (1998). For a related online version see: C. Gund-lach, http://xxx.lanl.gov/abs/gr-qc/9712084. 1.3 Gundlach, C., “Nonspherical perturbations of critical collapse and cosmic censorship”, Phys. Rev. D, 57, 7075–7079, (1998). For a related online version see: C. Gundlach, http://xxx.lanl.gov/abs/gr-qc/9710066. 4.5, 4.6, 4.6.2, 4.7.2 Gundlach, C., and Martín-García, J.M., “Charge scaling and universality in critical collapse”, Phys. Rev. D, 54, 7353–7360, (1996). For a related online version see: C. Gundlach, et al., http://xxx.lanl.gov/abs/gr-qc/9606072. 2.2, 4.3, 4.3, 4.7.1, 4.7.2 Gundlach, C., Pullin, J., and Price, R., “Late-time behavior of stellar collapse and explosions: II. Nonlinear evolution”, Phys. Rev. D, 49, 890, (1994). For a related online version see: C. Gundlach, et al., http://xxx.lanl.gov/abs/gr-qc/9307009. 1 Hamadé, R.S., Horne, J.H., and Stewart, J.M., “Continuous self-similarity and S-duality”, Class. Quantum Grav., 13, (1996). For a related online version see: R.S. Hamadé, et al., http://xxx.lanl.gov/abs/gr-qc/9511024. 2.2, 4.2 Hamadé, R.S., and Stewart, J.M., “The spherically symmetric collapse of a massless scalar field”, Class. Quantum Grav., 13, 497, (1996). For a related online version see: R.S. Hamadé, et al., (1995), http://xxx.lanl.gov/abs/gr-qc/9506044. 1, 4.5 Hara, T., Koike, T., and Adachi, S., “Renormalization group and critical behavior in gravitational collapse”, (July, 1996), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9607010. 2.2, 4.3 Hirschmann, E.W., and Eardley, D.M., “Critical exponents and stability at the black hole threshold for a complex scalar field”, Phys. Rev. D, 52, (1995). For a related online version see: E.W. Hirschmann, et al., (1995), http://xxx.lanl.gov/abs/gr-qc/9506078. 2.2, 4, 3.3, 4.2 Hirschmann, E.W., and Eardley, D.M., “Universal scaling and echoing in gravitational collapse of a complex scalar field”, Phys. Rev. D, 51, 4198, (1995). For a related online version see: E.W. Hirschmann, et al., (1994),http://xxx.lanl.gov/abs/gr-qc/9412066. 2.2, 4, 4.2, 4.5, 4.5, 4.5 Hirschmann, E.W., and Eardley, D.M., “Criticality and bifurcation in the gravitational collapse of a self-coupled scalar field”, Phys. Rev. D, 56, (1997). For a related online version see: E.W. Hirschmann, et al., (1995), http://xxx.lanl.gov/abs/gr-qc/9511052. 2.2, 4.2 Hod, S., and Piran, T., “Critical behaviour and universality in gravitational collapse of a charged scalar field”, Phys. Rev. D, 55, (1997). For a related online version see: S. Hod, et al., http://xxx.lanl.gov/abs/gr-qc/9606093. 2.2, 4.7.1 Hod, S., and Piran, T., “Fine-structure of Choptuik’s mass-scaling relation”, Phys. Rev. D, 55, 440, (1997). For a related online version see:S. Hod, et al., (1996), http://xxx.lanl.gov/abs/gr-qc/9606087. 3.3 Horne, J., personal communication. 4.5 Horne, J., “Critical behavior in black hole collapse”, Matters of Gravity, 7, 14, (1996). For a related online version see: J. Horne, (1996), http://xxx.lanl.gov/abs/gr-qc/9602001. 1.3 Jhingan, S., Joshi, P.S., and Singh, T.P., “The final fate of spherical in-homogeneous dust collapse II: Initial data and causal structure of singularity”, Class. Quantum Grav., 13, 3057, (1996). For a related online version see: S. Jhingan, et al., (1996), http://xxx.lanl.gov/abs/gr-qc/9604046. 2.2 Koike, T., Hara, T., and Adachi, S., “Critical behaviour in gravitational collapse of radiation fluid — A renormalization group (linear perturbation) analysis”, Phys. Rev. Lett., 74, 5170, (1995). For a related online version see: T. Koike, et al., (1995), http://xxx.lanl.gov/abs/gr-qc/9503007. 2.2, 3.3, 4.6.2, 5.2 Koike, T., Hara, T., and Adachi, S., “Critical behavior in gravitational collapse of a perfect fluid”, Phys. Rev. D, 59, 104008, (1999). 2.2 Lake, K., and Zannias, T., “Naked singularities in self-similar gravitational collapse”, Phys. Rev. D, 41, 3866–3868, (1990). 3.2 Lavrelashvili, G., and Maison, D., “A remark on the instability of the Bartnik-McKinnon solutions”, Phys. Lett. B, 343, 214–217, (1995). 2.2 Liebling, S.L., “Multiply unstable black hole critical solutions”, Phys. Rev. D, 58, (1998). For a related online version see: S.L. Liebling, http://xxx.lanl.gov/abs/gr-qc/9805043. 2.2, 4.2 Liebling, S.L., “Critical phenomena inside global monopoles”, Phys. Rev. D, 60, 061502, (1999). For a related online version see: S.L. Liebling, http://xxx.lanl.gov/abs/gr-qc/9904077. 2.2 Liebling, S.L., and Choptuik, M.W., “Black hole criticality in the Brans-Dicke model”, Phys. Rev. Lett., 77, 1424, (1996). For a related online version see: S.L. Liebling, et al., http://xxx.lanl.gov/abs/gr-qc/9606057. 2.2, 4.2 Maison, D., “Non-universality of critical behaviour in spherically symmetric gravitational collapse”, Phys. Lett. B, 366, 82, (1996). For a related online version see: D. Maison, http://xxx.lanl.gov/abs/gr-qc/9504008. 2.2, 3.3, 4.2, 4.6.2 Martín-García, J.M., and Gundlach, C., “All nonspherical perturbations of the Choptuik spacetime decay”, Phys. Rev. D, 59, 064031, (1999). 2.2,4.6, 4.6.2 Neilsen, D.W., and Choptuik, M.W., “Critical phenomena in perfect fluids”, (December, 1998), http://xxx.lanl.gov/abs/gr-qc/9812053. 2.2, 4.2 Neilsen, D.W., and Choptuik, M.W, “Ultrarelativistic fluid dynamics”, (April, 1999), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/gr-qc/9904052. submitted to Class. Quantum Grav. 4.2 Niemeyer, J.C., and Jedamzik, K., “Near-critical gravitational collapse and the initial mass function of primordial black holes”, Phys. Rev. Lett.,80, 5481–5484, (1998). 5.4 Niemeyer, J.C., and Jedamzik, K., “Dynamics of primordial black hole formation”, Phys. Rev. D, 59, 124013, (1999). For a related online version see: J.C. Niemeyer, et al., http://xxx.lanl.gov/abs/astro-ph/9901292. 5.4 Ori, A., and Piran, T., “Naked singularities in self-similar spherical gravitational collapse”, Phys. Rev. Lett., 59, 2137, (1987). 3.2, 4.2 Ori, A., and Piran, T., “Naked singularities and other features of self-similar general-relativistic gravitational collapse”, Phys. Rev. D, 42, (1990). 3.2, 4.2 Oshiro, Y., Nakamura, K., and Tomimatsu, A., “Critical behavior of black hole formation in a scalar wave Collapse”, Prog. Theor. Phys., 91, 1265, (1994). For a related online version see: Y. Oshiro, et al., http://xxx.lanl.gov/abs/gr-qc/9402017. 4.5, 5.3 Peleg, Y., Bose, S., and Parker, L., “Choptuik scaling and quantum effects in 2D dilaton gravity”, Phys. Rev. D, 55, 4525, (1997). For a relatedonline version see: Y. Peleg, et al., http://xxx.lanl.gov/abs/gr-qc/9608040. 8 Price, R.H., and Pullin, J., “Analytic approximations to the spacetime of a critical gravitational collapse”, Phys. Rev. D, 54, 3792, (1996). For a related online version see: R.H. Price, et al., http://xxx.lanl.gov/abs/gr-qc/9601009. 5.3 Pullin, J., “Is there a connection between no-hair behavior and universality in gravitational collapse?”, Phys. Lett. A, 204, 7, (1995). For a related online version see: J. Pullin, http://xxx.lanl.gov/abs/gr-qc/9409044. 5.3 Rein, G., Rendall, A.D., and Schaeffer, J., “Critical collapse of collisionless matter — a numerical investigation”, Phys. Rev. D, 58, 044007, (1998). For a related online version see: G. Rein, et al., http://xxx.lanl.gov/abs/gr-qc/9804040. 2.2 Rendall, A., personal communication. 4 Roberts, M.D., “Scalar field counterexamples to the cosmic censorship hypothesis”, Gen. Relativ. Gravit., 21, 907–939, (1989). 4.4.2, 4.5, 5.3 Seidel, E., and Suen, W.-M., “Oscillating soliton stars”, Phys. Rev. Lett.,66, 1659, (1991). 2.2, 4 Straumann, N., and Zhou, Z.H., “Instability of a colored black hole solution”, Phys. Lett. B, 243, 33–35, (1990). 2.2 Strominger, A., and Thorlacius, L., “Universality and scaling at the onset of quantum black hole formation”, Phys. Rev. Lett., 72, 1584, (1994). For a related online version see: A. Strominger, et al., http://xxx.lanl.gov/abs/hep-th/9312017. 8 Tod, P., personal communication. 4.5 Volkov, M.S., Brodbeck, O., Lavrelashvili, G., and Straumann, N., “The number of sphaleron instabilities of the Bartnik-McKinnon solitons and”, Phys. Lett. B, 349, 438–442, (1995). For a related online version see: M.S. Volkov, et al., http://xxx.lanl.gov/abs/hep-th/9502045. 2.2 Volkov, M.S., and Gal’tsov, D.V., “Non-abelian Einstein-Yang-Mills black holes”, JETP Lett., 50, 346–350, (1990). 2.2 Wald, R.M., “Gravitational collapse and cosmic censorship”, (October, 1997), http://xxx.lanl.gov/abs/gr-qc/9710068. to appear in B. Iyer (ed.) The Black Hole Trail. 4.5 Wald, R.M., “Black holes and thermodynamics”, (February, 1997), [Online Los Alamos Preprint]: cited on 10 December 1999, http://xxx.lanl.gov/abs/hep-th/gr-qc/9702022. to appear in the proceedings of the Symposium on Black Holes and Relativistic Stars (in honor of S. Chandrasekhar), December 14–15, 1996. 5.5 Wang, A., and de Oliveira, H.P., “Critical phenomena of collapsing mass-less scalar wave packets”, Phys. Rev. D, 56, 753, (1997). For a related online version see: A. Wang, et al., http://xxx.lanl.gov/abs/gr-qc/9608063. 5.3 Wilson, K.G., “Problems in physics with many scales of length”, Sci. Am.,140, (August, 1979). 1.3 Yeomans, J.M., Statistical Mechanics of Phase Transitions, (Oxford University Press, 1992). 5.2 Yokoyama, J., “Cosmological constraints on primordial black holes produced in the near-critical gravitational collapse”, Phys. Rev. D, 58, 107502, (1998). For a related online version see: J. Yokoyama, http://xxx.lanl.gov/abs/gr-qc/9804041. 5.4