Isotopic effect on the dynamics of the H/D + LiH/LiD reactions
Tài liệu tham khảo
Wernli, 2009, Computing a three-dimensional electronic energy manifold for the LiH + H↔Li + H2 chemical reaction, J. Phys. Chem. A, 113, 1121, 10.1021/jp809163g
Roy, 2012, Quantum dynamics of H+LiH reaction and its isotopic variants, J. Chem. Phys., 136, 174313, 10.1063/1.4707144
Liu, 2011, Stereodynamics of the reaction H + LiH (v=0, j=0)→H2+Li and its isotopic variants, Comput. Theor. Chem., 965, 107, 10.1016/j.comptc.2011.01.034
Liu, 2011, Theoretical study of the dynamics for the H + LiH (v = 0, j = 0) → H2 + Li reaction and its isotopic variants, Eur. Phys. J. D, 61, 349, 10.1140/epjd/e2010-10133-0
Stancil, 1996, The lithium chemistry of the early universe, Astrophys. J., 458, 401, 10.1086/176824
Lepp, 2002, Atomic and molecular processes in the early universe, J. Phys. B – Atom. Mol. Opt. Phys., 35, R57, 10.1088/0953-4075/35/10/201
Bodo, 2003, The gas-phase lithium chemistry in the early universe: elementary processes, interaction forces and quantum dynamics, Phys. Rep., 384, 85, 10.1016/S0370-1573(03)00243-6
Gómez-Carrasco, 2014, State-to-state quantum wave packet dynamics of the LiH + H reaction on two ab initio potential energy surfaces, Astrophys. J., 784, 55, 10.1088/0004-637X/784/1/55
Bovino, 2009, Fast LiH destruction in reaction with H: quantum calculations and astrophysical consequences, Astrophys. J., 699, 383, 10.1088/0004-637X/699/1/383
Bovino, 2011, On the relative abundance of LiH and LiH+ molecules in the early universe: new results from quantum reactions, Astrophys. J., 731, 107, 10.1088/0004-637X/731/2/107
He, 2015, Quantum state-to-state dynamics of the H+LiH→H2 + Li reaction, J. Phys. Chem. A, 119, 8912, 10.1021/acs.jpca.5b05178
Aslan, 2012, Accurate time-dependent wave packet study of the H+ + LiH reaction at early universe conditions, Astrophys. J., 759, 31, 10.1088/0004-637X/759/1/31
Dalgarno, 1996, The radiative association of Li+ and H, Li and H+, and Li and H, Astrophys. J., 458, 397, 10.1086/176823
Gianturco, 1996, Radiative association of LiH (X1Σ+) from electronically excited lithium atoms, Phys. Rev. A, 54, 4073, 10.1103/PhysRevA.54.4073
Stancil, 1997, Stimulated radiative association of Li and H in the early universe, Astrophys. J., 479, 543, 10.1086/303920
Lee, 1999, Potential energy surfaces for LiH2 and photochemical reactions Li∗+ H2↔LiH + H, J. Phys. Chem. A, 103, 11080, 10.1021/jp9921295
Bililign, 2001, Far-wing scattering studies on the reaction Li∗(2p, 3p)+H2→LiH(v″=1, 2, J″) + H, J. Chem. Phys., 114, 7052, 10.1063/1.1359774
Chen, 2001, Reaction pathway, energy barrier, and rotational state distribution for Li (22PJ)+H2→LiH (X1Σ+)+H, J. Chem. Phys., 114, 9395, 10.1063/1.1370070
Chen, 2003, Influence of vibrational excitation on the reaction Li(22PJ) + H2 (v=1)→LiH(X1Σ+)+H, J. Chem. Phys., 119, 8785, 10.1063/1.1620997
Hsiao, 2011, Quasiclassical trajectory calculations for Li(22PJ) + H2→LiH(X1Σ+)+H: influence by vibrational excitation and translational energy, J. Chem. Phys., 134, 034119, 10.1063/1.3519801
Dunne, 2001, Analytical potential energy surface and quasi-classical dynamics for the reaction LiH (X,1Σ+) + H (2S)→Li (2S) + H2 (X,1Σ+g), Chem. Phys. Lett., 336, 1, 10.1016/S0009-2614(01)00102-6
Prudente, 2009, Time-dependent wave packet calculation of the LiH + H reactive scattering on a new potential energy surface, Chem. Phys. Lett., 474, 18, 10.1016/j.cplett.2009.04.016
Sha, 2013, Influence of early-staged energy barrier on stereodynamics of reaction of LiH (v=0, j=0)+H→Li+H2, Chem. Res. Chin. Univ., 29, 956, 10.1007/s40242-013-3134-3
Yuan, 2015, A new potential energy surface for the ground electronic state of the LiH2 system, and dynamics studies on the H (2S) + LiH (X,1Σ+)→Li (2S)+H2 (X,1Σ+g) reaction, Phys. Chem. Chem. Phys., 17, 11732, 10.1039/C4CP05352D
Padmanaban, 2002, Time-dependent wave packet dynamics of the H + HLi reactive scattering, J. Chem. Phys., 117, 6469, 10.1063/1.1504702
Padmanaban, 2004, Quantum wave-packet dynamics of H + HLi scattering: reaction cross section and thermal rate constant, J. Chem. Phys., 121, 7681, 10.1063/1.1794655
Defazio, 2005, Product distributions, rate constants, and mechanisms of LiH + H reactions, J. Chem. Phys., 122, 214303, 10.1063/1.1914765
Jiang, 2013, Influence of collision energy and reagent vibrational excitation on the stereodynamics of the reaction H + LiH→H2 + Li, Chem. Phys., 415, 8, 10.1016/j.chemphys.2013.02.005
Li, 2013, Influence of collision energy and reagent vibrational excitation on the dynamics of the reaction H plus LiH, Int. J. Quan. Chem., 113, 2379, 10.1002/qua.24468
Zhang, 2013, Adiabatic/nonadiabatic state-to-state reactive scattering dynamics implemented on graphics processing units, J. Phys. Chem. A, 117, 8512, 10.1021/jp400102r
Wu, 2015, Time-dependent wave packet state-to-state quantum dynamics study of the abstraction reaction S(3P)+H2 (v=0, j=0) on 13A″ electronic state, Chem. Phys., 453–454, 47, 10.1016/j.chemphys.2015.04.003
Zhang, 2015, GQSD: the program for the graphic processing units accelerated quantum scattering dynamics, Int. J. Quan. Chem., 115, 738, 10.1002/qua.24880
Han, 1996, Effect of location of energy barrier on the product alignment of reaction A + BC, J. Chem. Phys., 105, 8699, 10.1063/1.472651
Wang, 1998, Product rotational polarization in the photoinitiated bimolecular reaction A + BC→AB + C on attractive, mixed and repulsive surfaces, J. Chem. Phys., 109, 5446, 10.1063/1.476522
Wang, 1998, Product rotational polarization in photo-initiated bimolecular reactions A + BC: dependence on the character of the potential energy surface for different mass combinations, J. Phys. Chem. A, 102, 10204, 10.1021/jp981738u
He, 2015, Collision time of a triatomic chemical reaction A + BC, Can. J. Chem., 93, 607, 10.1139/cjc-2014-0527
He, 2015, Mechanism of the collision energy and reagent vibration’s effects on the collision time for the reaction Ca + HCl, Comput. Theor. Chem., 1056, 1, 10.1016/j.comptc.2014.12.023
Song, 2013, Time-dependent wave packet state-to-state dynamics of H/D + HCl/DCl reactions, J. Chem. Phys., 138, 054305, 10.1063/1.4790116
Wang, 2013, Reactive scattering for different isotopologues of the H3− system: comparison of different potential energy surfaces, J. Phys. Chem. A, 117, 7492, 10.1021/jp401608s