Influence of the material constitutive models on the adiabatic shear band spacing: MTS, power law and Johnson–Cook models
Tài liệu tham khảo
Bai, 1982, Thermo-plastic instability in simple shear, J. Mech. Phys. Solids, 30, 195, 10.1016/0022-5096(82)90029-1
Bai, 1992
Batra, 2001, Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material, Int. J. Plasticity, 17, 1465, 10.1016/S0749-6419(01)00004-3
Chen, 1999, Effect of material parameters on shear band spacing in work-hardening gradient dependent thermoviscoplastic materials, Int. J. Plasticity, 15, 551, 10.1016/S0749-6419(99)00006-6
Chen, 1996, Constitutive behavior of tantalum and tantalum–tungsten alloys, Metall. Mater. Trans. A, 27A, 2994, 10.1007/BF02663849
Clifton, R.J., 1978. Adiabatic shear in material response to ultra loading rates. Report No. NMAB-356. National Advisory Board Committee, pp. 129–142 (Chapter 8)
Da Silva, 1997, The rate-dependent deformation and localization of fully dense and porous Ti–6Al–4V, Mater. Sci. Eng., 232, 11, 10.1016/S0921-5093(97)00076-2
Estrin, 1984, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta. Metall., 32, 57, 10.1016/0001-6160(84)90202-5
Follansbee, 1989, An analysis of the low temperature low and high strain rate deformation of Ti–6Al–4V, Metall. Trans. A, 20, 863, 10.1007/BF02651653
Follansbee, 1988, A constitutive description of the deformation of copper based on the use of the mechanical threshold as an internal state variable, Acta Metall., 36, 81, 10.1016/0001-6160(88)90030-2
Goto, 2000, The mechanical threshold stress constitutive-strength model description of HY-100 steel, Metall. Mater. Trans., 31A, 1985, 10.1007/s11661-000-0226-8
Grady, 1987, The growth of unstable thermoplastic shear with application to steady wave shock compression in solids, J. Mech. Phys. Solids, 35, 95, 10.1016/0022-5096(87)90030-5
Johnson, G.R., Cook, W.H., 1983. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of 7th International Symposium on Ballistics, The Hague, Netherlands, pp. 12–21
Klopp, 1985, Pressure-shear impact and the dynamic viscoplastic response of metals, Mech. Mater., 4, 375, 10.1016/0167-6636(85)90033-X
Kocks, 1976, Laws for work-hardening and low temperature creep, ASME J. Eng. Mater. Technol., 98, 76, 10.1115/1.3443340
Lee, 1998, Plastic deformation and fracture behavior of Ti–6Al–4V alloy loaded with high strain rate under various temperatures, Mater. Sci. Eng. A, 241, 48, 10.1016/S0921-5093(97)00471-1
Marchand, 1988, An experimental study of the formation process of adiabatic shear bands in a structural steel, J. Mech. Phys. Solids, 36, 251, 10.1016/0022-5096(88)90012-9
Mecking, 1981, Kinetics of flow and strain-hardening, Acta Metall., 29, 1865, 10.1016/0001-6160(81)90112-7
Molinari, 1985, Instabilité thermo-visco-plastique en cisaillement simple, J. Méc. Théor. Appl., 4, 659
Molinari, 1997, Collective behavior and spacing of adiabatic shear bands, J. Mech. Phys. Solids, 45, 1551, 10.1016/S0022-5096(97)00012-4
Molinari, 1983, Résultats exacts en théorie non liniéare, Compt. Rend. Acad. Sci., II, 1
Nesterenko, 2001
Nesterenko, 1995, Collective behavior of shear bands, 397
Nesterenko, 1998, Self-organisation in the initiation of adiabatic shear bands, Acta Metall., 46, 327
Oussouaddi, 2003, Application of the mechanical threshold stress for the analysis of the shear band spacing, Rev. Méc. Appl. Théor., 1, 239
Shawki, 1989, Shear band formation in thermal viscoplastic materials, Mech. Mater., 8, 13, 10.1016/0167-6636(89)90003-3
Varshni, 1970, Temperature dependence of the elastic constants, Phys. Rev. B, 2, 3952, 10.1103/PhysRevB.2.3952
Wright, 1996, A scaling law for the effect of inertia on the formation of adiabatic shear bands, Int. J. Plasticity, 12, 927, 10.1016/S0749-6419(96)00034-4
Xue, 2002, Self-organization of shear bands in titanium and Ti–6Al–4V alloy, Acta Mater., 50, 575, 10.1016/S1359-6454(01)00356-1
