Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity

Nature Reviews Neuroscience - Tập 8 Số 10 - Trang 766-775 - 2007
Vittorio Calabrese1, Cesare Mancuso2, Menotti Calvani3, Enrico Rizzarelli1, D. Allan Butterfield4, A. M. Giuffrida Stella1
1Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania, Catania, Italy
2Institute of Pharmacology, Catholic University School of Medicine, Roma, Italy.
3Department of Internal Medicine, Catholic University School of Medicine, Roma, Italy
4Department of Chemistry, Sanders-Brown Center on Aging and Center of Membrane Sciences, University of Kentucky, Lexington, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Guix, F. X., Uribesalgo, I., Coma, M. & Munoz, F. J. The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol. 76, 126–152 (2005). A comprehensive review of NO functions in the brain.

Rivier, C. Role of gaseous neurotransmitters in the hypothalamic–pituitary–adrenal axis. Ann. NY Acad. Sci. 933, 254–264 (2001). A useful paper for understanding the controversial action of NO in the regulation of the stress axis.

McCann, S. M. The nitric oxide hypothesis of brain aging. Exp. Gerontol. 32, 431–440 (1997).

Toda, N., Ayajiki, K. & Okamura, T. Nitric oxide and penile erectile function. Pharmacol. Ther. 106, 233–266 (2005).

Takahashi, T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J. Gastroenterol. 38, 421–430 (2003).

Currò, D. & Preziosi, P. Non-adrenergic non-cholinergic relaxation of the rat stomach. Gen. Pharmacol. 31, 697–703 (1998).

Pacher, P., Beckman, J. S. & Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

Hirst, D. G. & Robson T. Nitrosative stress in cancer therapy. Front. Biosci. 12, 3406–3418 (2007).

Ridnour, L. A. et al. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem. 385, 1–10 (2004).

Sultana R. et al. Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol. Dis. 22, 76–87 (2006).

Castegna A. et al. Proteomic identification of nitrated proteins in Alzheimer's disease brain. J. Neurochem. 85, 1394–1401 (2003). This was the first proteomics study to identify nitrated proteins in the brain of patients with Alzheimer's disease.

Bredt, D. S. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic. Res. 31, 577–596 (1999).

Dawson, T. M. & Snyder, S. H. Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J. Neurosci. 14, 5147–5159 (1994). This paper provides details on the distribution of nNOS in the CNS and PNS.

Rodrigo, J. et al. Localization of nitric oxide synthase in the adult rat brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 345, 175–221 (1994).

Vincent, S. R. & Kimura, H. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46, 755–784 (1992).

Bredt, D. S. et al. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7, 615–624 (1991).

De Giorgio, R. et al. Nitric oxide producing neurons in the monkey and human digestive system. J. Comp. Neurol. 342, 619–627 (1994).

Magee, T. et al. Cloning of a novel neuronal nitric oxide synthase expressed in penis and lower urinary tract. Biochem. Biophys. Res. Commun. 226, 145–151 (1996).

Calabrese, V., Butterfield, D. A., Scapagnini, G., Stella, A. M. & Maines, M. D. Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid. Redox Signal. 8, 444–477 (2006).

Colasanti, M. et al. Expression of a NOS-III-like protein in human astroglial cell culture. Biochem. Biophys. Res. Commun. 252, 552–555 (1998).

Rajasekaran, M. et al. Ex vivo expression of nitric oxide synthase isoforms (eNOS/iNOS) and calmodulin in human penile cavernosal cells. J. Urol. 160, 2210–2215 (1998).

Arnold, W. P., Mittal, C. K., Katsuki, S. & Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3′-5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl Acad. Sci. USA 74, 3203–3207 (1977). A milestone paper about the ability of NO to activate sGC.

Krumenacker, J. S., Hanafy, K. A. & Murad, F. Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res. Bull. 62, 505–515 (2004).

Nakane, M. Soluble guanylyl cyclase: physiological role as an NO receptor and the potential molecular target for therapeutic application. Clin. Chem. Lab. Med. 41, 865–870 (2003).

Uretsky, A. D., Weiss, B. L., Yunker, W. K. & Chang, J. P. Nitric oxide produced by a novel nitric oxide synthase isoform is necessary for gonadotropin-releasing hormone-induced growth hormone secretion via a cGMP-dependent mechanism. J. Neuroendocrinol. 15, 667–676 (2003).

Mollace, V., Muscoli, C., Masini, E., Cuzzocrea, S. & Salvemini, D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol. Rev. 57, 217–252 (2005).

Motterlini, R., Green, C. J. & Foresti, R. Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid. Redox Signal. 4, 615–624 (2002).

Contestabile, A. & Ciani, E. Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. Neurochem. Int. 45, 903–914 (2004).

Riccio, A. et al. A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol. Cell 21, 283–294 (2006). This study demonstrates that the NO pathway controls CREB–DNA binding and CRE-mediated gene expression.

Foster, M. W., McMahon, T. J. & Stamler, J. S. S-nitrosylation in health and disease. Trends Mol. Med. 9, 160–168 (2003).

Garthwaite, J., Charles, S. L. & Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388 (1988). A landmark paper that demonstrates that EDRF, the early name given to NO, is involved in neurotransmission.

Palmer, R. M., Ferrige, A. G. & Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526 (1987).

Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. & Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl Acad. Sci. USA 84, 9265–9269 (1987). A milestone paper that reveals the identity of EDRF as NO.

Garthwaite, J. & Boulton, C. L. Nitric oxide signaling in the central nervous system. Annu. Rev. Physiol. 57, 683–706 (1995).

Sanders, K. M. & Ward, S. M. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am. J. Physiol. 262, G379–G392 (1992).

Prast, H., Tran, M. H., Fischer, H. & Philippu, A. Nitric oxide-induced release of acetylcholine in the nucleus accumbens: role of cyclic GMP, glutamate, and GABA. J. Neurochem. 71, 266–273 (1998).

Getting, S. J., Segieth, J., Ahmad, S., Biggs, C. S. & Whitton, P. S. Biphasic modulation of GABA release by nitric oxide in the hippocampus of freely moving rats in vivo. Brain Res. 717, 196–199 (1996).

Ohkuma, S., Katsura, M., Chen, D. Z., Narihara, H. & Kuriyama, K. Nitric oxide-evoked [3H]γ-aminobutyric acid release is mediated by two distinct release mechanisms. Brain Res. Mol. Brain Res. 36, 137–144 (1996).

Lonart, G., Wang, J. & Johnson, K. M. Nitric oxide induces neurotransmitter release from hippocampal slices. Eur. J. Pharmacol. 220, 271–272 (1992).

Lorrain, D. S. & Hull, E. M. Nitric oxide increases dopamine and serotonin release in the medial preoptic area. Neuroreport 5, 87–89 (1993).

Kaehler, S. T., Singewald, N., Sinner, C. & Philippu, A. Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Res. 835, 346–349 (1999).

Bon, C. L. & Garthwaite, J. On the role of nitric oxide in hippocampal long-term potentiation. J. Neurosci. 23, 1941–1948 (2003).

Boulton, C. L., Southam, E. & Garthwaite, J. Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanylyl cyclase. Neuroscience 69, 699–703 (1995).

Chien, W. L. et al. Enhancement of long-term potentiation by a potent nitric oxide–guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole. Mol. Pharmacol. 63, 1322–1328 (2003).

Hars, B. Endogenous nitric oxide in the rat pons promotes sleep. Brain Res. 816, 209–219 (1999).

Datta, S., Patterson, E. H. & Siwek, D. F. Endogenous and exogenous nitric oxide in the pedunculopontine tegmentum induces sleep. Synapse 27, 69–78 (1997).

Cavas, M. & Navarro, J. F. Effects of selective neuronal nitric oxide synthase inhibition on sleep and wakefulness in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 56–67 (2006).

Stern, J. E. Nitric oxide and homeostatic control: an intercellular signalling molecule contributing to autonomic and neuroendocrine integration? Prog. Biophys. Mol. Biol. 84, 197–215 (2004).

Toni, R., Malaguti, A., Benfenati, F. & Martini L. The human hypothalamus: a morpho-functional perspective. J. Endocrinol. Invest. 27, 73–94 (2004).

Tsigos, C. & Chrousos, G. P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53, 865–871 (2002).

Barberis, C. & Tribollet, E. Vasopressin and oxytocin receptors in the central nervous system. Crit. Rev. Neurobiol. 10, 119–154 (1996).

Tringali, G., Aubry, J. M., Navarra, P. & Pozzoli, G. Lamotrigine inhibits basal and Na+-stimulated, but not Ca2+-stimulated, release of corticotropin-releasing hormone from the rat hypothalamus. Psychopharmacology (Berl.) 188, 386–392 (2006).

Costa, A., Trainer, P., Besser, M. & Grossman, A. Nitric oxide modulates the release of corticotropin-releasing hormone from the rat hypothalamus in vitro. Brain Res. 605, 187–192 (1993).

Yasin, S. et al. Nitric oxide modulates the release of vasopressin from rat hypothalamic explants. Endocrinology 133, 1466–1469 (1993).

Nguyen, K. T. et al. Exposure to acute stress induces brain interleukin-1β protein in the rat. J. Neurosci. 18, 2239–2246 (1998).

Karanth, S., Lyson, K. & McCann, S. M. Role of nitric oxide in interleukin 2-induced corticotropin-releasing factor release from incubated hypothalami. Proc. Natl Acad. Sci. USA 90, 3383–3387 (1993).

Rivier, C. Role of nitric oxide in regulating the rat hypothalamic–pituitary–adrenal axis response to endotoxemia. Ann. NY Acad. Sci. 992, 72–85 (2003).

Kadekaro, M. Nitric oxide modulation of the hypothalamo-neurohypophyseal system. Braz. J. Med. Biol. Res. 37, 441–450 (2004).

Brann, D. W., Bhat, G. K., Lamar, C. A. & Mahesh, V. B. Gaseous transmitters and neuroendocrine regulation. Neuroendocrinology 65, 385–395 (1997).

Argiolas, A. & Melis, M. R. Central control of penile erection: role of the paraventricular nucleus of the hypothalamus. Prog. Neurobiol. 76, 1–21 (2005).

Mancuso, C. Heme oxygenase and its products in the nervous system. Antioxid. Redox Signal. 6, 878–887 (2004).

Mancuso, C. et al. Inhibition of heme oxygenase in the central nervous system potentiates endotoxin-induced vasopressin release in the rat. J. Neuroimmunol. 99, 189–194 (1999).

Mancuso, C. et al. Activation of heme oxygenase and consequent carbon monoxide formation inhibits the release of arginine vasopressin from rat hypothalamic explants. Molecular linkage between heme catabolism and neuroendocrine function. Brain Res. Mol. Brain Res. 50, 267–276 (1997). This was the first paper to provide direct evidence that carbon monoxide is involved in the regulation of vasopressin release from rat hypothalamic explants.

Pozzoli, G. et al. Carbon monoxide as a novel neuroendocrine modulator: inhibition of stimulated corticotropin-releasing hormone release from acute rat hypothalamic explants. Endocrinology 135, 2314–2317 (1994).

Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P. & Snyder, S. H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biol. 3, 193–197 (2001).

Choi, Y. B. et al. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nature Neurosci. 3, 15–21 (2000).

Lipton, S. A., Singel, D. J. & Stamler, J. S. Nitric oxide in the central nervous system. Prog. Brain Res. 103, 359–364 (1994).

Mungrue, I. N. & Bredt, D. S. nNOS at a glance: implications for brain and brawn. Cell Sci. 117, 2627–2629 (2004).

Melino, G. et al. S-nitrosylation regulates apoptosis. Nature 388, 432–433 (1997).

Liu, L. & Stamler, J. S. NO: an inhibitor of cell death. Cell Death Differ. 6, 937–942 (1999).

Mannick, J. B. et al. S-Nitrosylation of mitochondrial caspases. J. Cell Biol. 154, 1111–1116 (2001).

Tenneti, L., D'Emilia, D. M. & Lipton, S. A. Suppression of neuronal apoptosis by S-nitrosylation of caspases. Neurosci. Lett. 236, 139–142 (1997).

Zhou, P., Qian, L. & Iadecola, C. Nitric oxide inhibits caspase activation and apoptotic morphology but does not rescue neuronal death. J. Cereb. Blood Flow Metab. 25, 348–357 (2005).

Kitamura, Y. et al. In vitro and in vivo induction of heme oxygenase-1 in rat glial cells: possible involvement of nitric oxide production from inducible nitric oxide synthase. Glia 22, 138–148 (1998).

Mancuso, C., Bonsignore, A., Di Stasio, E., Mordente, A. & Motterlini, R. Bilirubin and S-nitrosothiols interaction: evidence for a possible role of bilirubin as a scavenger of nitric oxide. Biochem. Pharmacol. 66, 2355–2363 (2003). In this paper, the authors describe the ability of bilirubin to interact with S -nitrosothiols.

Good, P. F., Hsu, A., Werner, P., Perl, D. P. & Olanow, C. W. Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol. 57, 338–342 (1998).

Mancuso, C. et al. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front. Biosci. 12, 1107–1123 (2007).

Dalle-Donne, I., Scaloni, A. & Butterfield, D. A. (Eds) Redox Proteomics: From Protein Modifications to Cellular Dysfunctions and Diseases (John Wiley & Sons, New Jersey, 2006). A comprehensive treatise on the identification of oxidatively modified proteins in health and disease.

Castegna, A. et al. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J. Neurochem. 82, 1524–1532 (2002).

Messier, C. & Gagnon, M. Glucose regulation and brain aging. J. Nutr. Health Aging 4, 208–213 (2000).

Vanhanen, M. & Soininen, H. Glucose intolerance, cognitive impairment and Alzheimer's disease. Curr. Opin. Neurol. 11, 673–677 (1998).

Ojika, K., Tsugu, Y., Mitake, S., Otsuka, Y. & Katada, E. NMDA receptor activation enhances the release of a cholinergic differentiation peptide (HCNP) from hippocampal neurons in vitro. Brain Res. Dev. Brain Res. 106, 173–180 (1998).

Rossor, M. N. et al. The substantia innominata in Alzheimer's disease: an histochemical and biochemical study of cholinergic marker enzymes. Neurosci. Lett. 28, 217–222 (1982).

Giacobini, E. Cholinergic function and Alzheimer's disease. Int. J. Geriatr. Psychiatry 18, S1–S5 (2003).

Sun, M. K. & Alkon, D. L. Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends Pharmacol. Sci. 23, 83–89 (2002).

Chuang, D. M., Hough, C. & Senatorov, V. V. Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 45, 269–290 (2005).

Browne, S. E. & Beal, M. F. Oxidative damage in Huntington's disease pathogenesis Antioxid. Redox Signal. 8, 2061–2073 (2006).

Gu, Z. et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186–1190 (2002).

Yong, V. W., Power, C., Forsyth, P. & Edwards, D. R. Metalloproteinases in biology and pathology of the nervous system. Nature Rev. Neurosci. 2, 502–511 (2001).

Yao, D. et al. Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl Acad. Sci. USA 101, 10810–10814 (2004).

Chung, K. K. et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328–1331 (2004).

Hara, M. R. et al. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc. Natl Acad. Sci. USA 103, 3887–3889 (2006). This paper describes a GAPDH–SIAH1-mediated pathway for cell death and unravels a new mechanism of action for selegiline, a drug used in the treatment of Parkinson's disease.

Uehara, T. et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513–517 (2006).

Burnett, A. L. The role of nitric oxide in erectile dysfunction: implications for medical therapy. J. Clin. Hypertens. (Greenwich) 8 (Suppl. 4), 53–62 (2006).

Redington, A. E. Modulation of nitric oxide pathways: therapeutic potential in asthma and chronic obstructive pulmonary disease. Eur. J. Pharmacol. 533, 263–276 (2006).

Griffiths, M. J. & Evans, T. W. Inhaled nitric oxide therapy in adults. N. Engl. J. Med. 353, 2683–2695 (2005).

Hemnes, A. R. & Champion, H. C. Sildenafil, a PDE5 inhibitor, in the treatment of pulmonary hypertension. Expert Rev. Cardiovasc. Ther. 4, 293–300 (2006).

Butterfield D. et al. Nutritional approaches to combat oxidative stress in Alzheimer's disease. J. Nutr. Biochem. 13, 444 (2002).

Scapagnini, G. et al. Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid. Redox Signal. 8, 395–403 (2006).

Kanski, J., Aksenova, M., Stoyanova, A. & Butterfield, D. A. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J. Nutr. Biochem. 13, 273–281 (2002).

Kim, H. S. et al. Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of β-amyloid peptide (1–42) in mice. Biol. Pharm. Bull. 27, 120–121 (2004).

Sultana, R., Ravagna, A., Mohmmad-Abdul, H., Calabrese, V. & Butterfield, D. A. Ferulic acid ethyl ester protects neurons against amyloid β-peptide(1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J. Neurochem. 92, 749–758 (2005).

Calabrese, V., Giuffrida Stella, A. M., Calvani, M. & Butterfield, D. A. Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J. Nutr. Biochem. 17, 73–88 (2006).

Calabrese, V. et al. Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: evidence for a protective role of acetylcarnitine. Neurochem. Res. 28, 1321–1328 (2003).

Abdul, H. M., Calabrese, V., Calvani, M. & Butterfield, D. A. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-β peptide 1–42-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease. J. Neurosci. Res. 84, 398–408 (2006).

De Marchis, S., Modena, C., Peretto, P., Giffard, C. & Fasolo, A. Carnosine-like immunoreactivity in the central nervous system of rats during postnatal development. J. Comp. Neurol. 426, 378–390 (2000).

Calabrese, V. et al. Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem. Res. 30, 797–807 (2005).

Preston, J. E., Hipkiss, A. R., Himsworth, D. T., Romero, I. A. & Abbott, J. N. Toxic effects of β-amyloid (25–35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and β-alanine. Neurosci. Lett. 242, 105–108 (1998).

Hipkiss, A. R. et al. Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Ann. NY Acad. Sci. 854, 37–53 (1998).

Fontana, M., Pinnen, F., Lucente, G. & Pecci, L. Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudodipeptides. Cell. Mol. Life Sci. 59, 546–551 (2002).

Joshi, G. et al. Glutathione elevation by γ-glutamylcysteine ethyl ester as a potential therapeutic strategy towards preventing oxidative stress in brain mediated by in vivo administration of adriamycin: implications for chemobrain. J. Neurosci. Res. 85, 497–503 (2007).

Tangpong, J. et al. Adriamycin-induced, TNF-α-mediated central nervous system toxicity. Neurobiol. Dis. 23, 127–139 (2006).

Tangpong, J. et al. Adriamycin mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J. Neurochem. 100, 191–201 (2007).

Silverman, D. H. et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res. Treat. 103, 303–311 (2007).

Rahman, I., Biswas, S. K. & Kirkham, P. A. Regulation of inflammation and redox signalling by dietary polyphenols. Biochem. Pharmacol. 72, 1439–1452 (2006).

Sultana, R. et al. Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional study. J. Cell. Mol. Med. 11, 839–851 (2007).

Butterfield, D. A. et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer's disease. Neurobiol. Dis. 22, 223–232 (2006). This was the first paper to describe proteomics-identified oxidatively modified brain proteins in mild cognitive impairment, a precursor to Alzheimer's disease.

Salerno, L., Sorrenti, V., Di Giacomo, C., Romeo, G. & Siracusa, M. A. Progress in the development of selective nitric oxide synthase (NOS) inhibitors. Curr. Pharm. Des. 8, 177–200 (2002). This paper provides useful information about the selectivity of several NOS inhibitors.

Mejia-Garcia, T. A. & Paes-de-Carvalho, R. Nitric oxide regulates cell survival in purified cultures of avian retinal neurons: involvement of multiple transduction pathways. J. Neurochem. 100, 382–394 (2007).

Privalle, C., Talarico, T., Keng, T. & DeAngelo, J. Pyridoxalated hemoglobin polyoxyethylene: a nitric oxide scavenger with antioxidant activity for the treatment of nitric oxide-induced shock. Free Radic. Biol. Med. 28, 1507–1517 (2000).

Kaur, H. et al. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett. 543, 113–119 (2003).