Reconstruction of Cell-type-Specific Interactomes at Single-Cell Resolution

Cell Systems - Tập 9 - Trang 559-568.e4 - 2019
Shahin Mohammadi1,2, Jose Davila-Velderrain1,2, Manolis Kellis1,2
1MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
2Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

Tài liệu tham khảo

Albert, 2000, Error and attack tolerance of complex networks, Nature, 406, 378, 10.1038/35019019 Angerer, 2017, Single cells make big data: new challenges and opportunities in transcriptomics, Curr. Opin. Syst. Biol., 4, 85, 10.1016/j.coisb.2017.07.004 Barabási, 2004, Network biology: understanding the cell’s functional organization, Nat. Rev. Genet., 5, 101, 10.1038/nrg1272 Bello, 2018, Disease Ontology: improving and unifying disease annotations across species, Dis. Models Mech., 11, dmm032839, 10.1242/dmm.032839 Bossi, 2009, Tissue specificity and the human protein interaction network, Mol. Syst. Biol., 5, 260, 10.1038/msb.2009.17 Byrne, 2014, Autoimmune vitiligo does not require the ongoing priming of naive CD8 T cells for disease progression or associated protection against melanoma, J. Immunol., 192, 1433, 10.4049/jimmunol.1302139 Caldu-Primo, 2018, Structural robustness of mammalian transcription factor networks reveals plasticity across development, Sci. Rep., 8, 13922, 10.1038/s41598-018-32020-1 De Strooper, 2016, The cellular phase of Alzheimer’s disease, Cell, 164, 603, 10.1016/j.cell.2015.12.056 Fisher, 2006 Hampe, 2012, B cells in autoimmune diseases, Scientifica, 2012, 1, 10.6064/2012/215308 Huang, 2018, Systematic evaluation of molecular networks for discovery of disease genes, Cell Syst., 6, 484, 10.1016/j.cels.2018.03.001 Kitsak, 2010, Identification of influential spreaders in complex networks, Nat. Phys., 6, 888, 10.1038/nphys1746 Köhler, 2008, Walking the interactome for prioritization of candidate disease genes, Am. J. Hum. Genet., 82, 949, 10.1016/j.ajhg.2008.02.013 Lake, 2018, Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain, Nat. Biotechnol., 36, 70, 10.1038/nbt.4038 Levinson, 2010, Evidence of cortical inhibitory deficits in major depressive disorder, Biol. Psychiatry, 67, 458, 10.1016/j.biopsych.2009.09.025 Li, 2017, A scored human protein-protein interaction network to catalyze genomic interpretation, Nat. Methods, 14, 61, 10.1038/nmeth.4083 Liégeois, 2012, Neural bases of childhood speech disorders: lateralization and plasticity for speech functions during development, Neurosci. Biobehav. Rev., 36, 439, 10.1016/j.neubiorev.2011.07.011 Lissemore, 2018, Reduced GABAergic cortical inhibition in aging and depression, Neuropsychopharmacology, 43, 2277, 10.1038/s41386-018-0093-x Loscalzo, 2017 MacArthur, 2017, The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog), Nucleic Acids Res., 45, D896, 10.1093/nar/gkw1133 Magger, 2012, Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks, PLoS Comput. Biol., 8, e1002690, 10.1371/journal.pcbi.1002690 Menche, 2015, Disease networks. Uncovering disease-disease relationships through the incomplete interactome, Science, 347, 1257601, 10.1126/science.1257601 Mohammadi, 2016, A convex optimization approach for identification of human tissue-specific interactomes, Bioinformatics, 32, i243, 10.1093/bioinformatics/btw245 Mohammadi, 2018, A geometric approach to characterize the functional identity of single cells, Nat. Commun., 9, 1516, 10.1038/s41467-018-03933-2 Nestor, 2018, Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors, J. Exp. Med., 215, 2554, 10.1084/jem.20180776 Piñero, 2017, DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants, Nucleic Acids Res., 45, D833, 10.1093/nar/gkw943 Pugliese, 2017, Autoreactive T cells in type 1 diabetes, J. Clin. Invest., 127, 2881, 10.1172/JCI94549 Regev, 2017, The human cell Atlas, eLife, 6, e27041, 10.7554/eLife.27041 Rolland, 2014, A proteome-scale map of the human interactome network, Cell, 159, 1212, 10.1016/j.cell.2014.10.050 Rozenblatt-Rosen, 2017, The Human Cell Atlas: from vision to reality, Nature, 550, 451, 10.1038/550451a Sahni, 2015, Widespread macromolecular interaction perturbations in human genetic disorders, Cell, 161, 647, 10.1016/j.cell.2015.04.013 Skene, 2018, Genetic identification of brain cell types underlying schizophrenia, Nat. Genet., 50, 825, 10.1038/s41588-018-0129-5 2018, Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris, Nature, 562, 367, 10.1038/s41586-018-0590-4 van der Wijst, 2018, Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs, Nat. Genet., 50, 493, 10.1038/s41588-018-0089-9 van Dijk, 2018, Recovering gene interactions from single-cell data using data diffusion, Cell, 174, 716, 10.1016/j.cell.2018.05.061 Vanunu, 2010, Associating genes and protein complexes with disease via network propagation, PLoS Comput. Biol., 6, e1000641, 10.1371/journal.pcbi.1000641 Wu, 2017, SZDB: A Database for Schizophrenia Genetic Research, Schizophr. Bull., 43, 459 Zong, 2015, Cell of origin for malignant gliomas and its implication in therapeutic development, Cold Spring Harbor Perspect. Biol., 7, a020610, 10.1101/cshperspect.a020610