Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity

Cell - Tập 184 - Trang 1171-1187.e20 - 2021
Emma C. Thomson1,2, Laura E. Rosen3, James G. Shepherd1, Roberto Spreafico3, Ana da Silva Filipe1, Jason A. Wojcechowskyj3, Chris Davis1, Luca Piccoli4, David J. Pascall5, Josh Dillen3, Spyros Lytras1, Nadine Czudnochowski3, Rajiv Shah1, Marcel Meury3, Natasha Jesudason1, Anna De Marco4, Kathy Li1, Jessica Bassi4, Aine O’Toole6, Dora Pinto4
1MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK
2Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
3Vir Biotechnology, San Francisco, CA 94158, USA
4Humabs Biomed SA, A Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
5Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow G61 1QH, UK
6Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK

Tài liệu tham khảo

Baum, 2020, Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies, Science, 369, 1014, 10.1126/science.abd0831 Boni, 2020, Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic, Nat. Microbiol., 5, 1408, 10.1038/s41564-020-0771-4 Bürkner, 2018, Advanced bayesian multilevel modeling with the R package brms, R J., 10, 395, 10.32614/RJ-2018-017 Casalino, 2020, Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein, ACS Cent. Sci., 6, 1722, 10.1021/acscentsci.0c01056 Case, 2017 Chen, 2021, SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19, N. Engl. J. Med., 384, 229, 10.1056/NEJMoa2029849 Choi, 2020, Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host, N. Engl. J. Med., 383, 2291, 10.1056/NEJMc2031364 Conceicao, 2020, The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins, PLoS Biol., 18, e3001016, 10.1371/journal.pbio.3001016 Corti, 2011, A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins, Science, 333, 850, 10.1126/science.1205669 2020, An integrated national scale SARS-CoV-2 genomic surveillance network, Lancet Microbe, 1, e99, 10.1016/S2666-5247(20)30054-9 Croll, 2018, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps, Acta Crystallogr. D Struct. Biol., 74, 519, 10.1107/S2059798318002425 da Silva Filipe, 2021, Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland, Nat. Microbiol., 6, 112, 10.1038/s41564-020-00838-z Darden, 1993, Particle mesh Ewald: An N log(N) method for Ewald sums in large systems, J. Chem. Physiol., 98, 10089 De Maio, 2020, Issues with SARS-CoV-2 sequencing data, nCoV-2019 Genomic Epidemiology Dearlove, 2020, A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants, Proc. Natl. Acad. Sci. USA, 117, 23652, 10.1073/pnas.2008281117 Doud, 2018, How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin, Nat. Commun., 9, 1386, 10.1038/s41467-018-03665-3 Eastman, 2017, OpenMM 7: Rapid development of high performance algorithms for molecular dynamics, PLoS Comput. Biol., 13, e1005659, 10.1371/journal.pcbi.1005659 Emsley, 2010, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493 Folegatti, 2020, Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet, 396, 467, 10.1016/S0140-6736(20)31604-4 Gaebler, 2021, Evolution of Antibody Immunity to SARS-CoV-2, Nature, 10.1038/s41586-021-03207-w Garrett Rappazzo, 2021, Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody, Science Giroglou, 2004, Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein, J. Virol., 78, 9007, 10.1128/JVI.78.17.9007-9015.2004 Gowers, 2016, MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations, Proceedings of the 15th Python in Science Conference, 98, 10.25080/Majora-629e541a-00e Greaney, 2021, Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies, Cell Host & Microbe Greaney, 2021, Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition, Cell Host & Microbe Grolemund, 2011, Dates and Times Made Easy with lubridate, J. Stat. Softw., 40.3, 1 Grubaugh, 2019, An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar, Genome Biol., 20, 8, 10.1186/s13059-018-1618-7 Hansen, 2020, Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail, Science, 369, 1010, 10.1126/science.abd0827 Harbison, 2019, Sequence-to-structure dependence of isolated IgG Fc complex biantennary N-glycans: a molecular dynamics study, Glycobiology, 29, 94, 10.1093/glycob/cwy097 Hou, 2020, SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo, Science, 370, 1464, 10.1126/science.abe8499 Hu, 2020, D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity, bioRxiv Jackson, 2020, An mRNA Vaccine against SARS-CoV-2 - Preliminary Report, N. Engl. J. Med., 383, 1920, 10.1056/NEJMoa2022483 Jiang, 2020, Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses, Trends Immunol., 41, 355, 10.1016/j.it.2020.03.007 Jones, 2020, LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection, bioRxiv Jorgensen, 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926, 10.1063/1.445869 Kabsch, 2010, Xds, Acta Crystallogr. D Biol. Crystallogr., 66, 125, 10.1107/S0907444909047337 Keech, 2020, Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine, N. Engl. J. Med., 383, 2320, 10.1056/NEJMoa2026920 Kirkpatrick, 2018, The influenza virus hemagglutinin head evolves faster than the stalk domain, Sci. Rep., 8, 10432, 10.1038/s41598-018-28706-1 Kirschner, 2008, GLYCAM06: a generalizable biomolecular force field. Carbohydrates, J. Comput. Chem., 29, 622, 10.1002/jcc.20820 Kluyver, 2016, Jupyter Notebooks – a publishing format for reproducible computational workflows, 87 Korber, 2020, Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus, Cell, 182, 812, 10.1016/j.cell.2020.06.043 Lan, 2020, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, 581, 215, 10.1038/s41586-020-2180-5 Leimkuhler, 2013, Robust and efficient configurational molecular sampling via Langevin dynamics, J. Chem. Phys., 138, 174102, 10.1063/1.4802990 Li, 2013, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv Li, 2018, Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics, 34, 3094, 10.1093/bioinformatics/bty191 Li, 2009, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 25, 1754, 10.1093/bioinformatics/btp324 Li, 2005, Structure of SARS coronavirus spike receptor-binding domain complexed with receptor, Science, 309, 1864, 10.1126/science.1116480 Li, 2015, Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model, J. Chem. Theory Comput., 11, 1645, 10.1021/ct500918t Li, 2020, The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity, Cell, 182, 1284, 10.1016/j.cell.2020.07.012 Li, 2020, Emergence of SARS-CoV-2 through recombination and strong purifying selection, Sci. Adv., 6, eabb9153, 10.1126/sciadv.abb9153 Li, 2020, Transmission dynamics and evolutionary history of 2019-nCoV, J. Med. Virol., 92, 501, 10.1002/jmv.25701 Liu, 2015, Simulation-efficient shortest probability intervals, Stat. Comput., 25, 809, 10.1007/s11222-015-9563-8 Lorenzo-Redondo, 2020, A clade of SARS-CoV-2 viruses associated with lower viral loads in patient upper airways, EBioMedicine, 62, 103112, 10.1016/j.ebiom.2020.103112 Lycett, 2021, Epidemic waves of COVID-19 in Scotland: a genomic perspective on the impact of the introduction and relaxation of lockdown on SARS-CoV-2, medRxiv Maier, 2015, ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, J. Chem. Theory Comput., 11, 3696, 10.1021/acs.jctc.5b00255 McCarthy, 2021, Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape, Science, 10.1126/science.abf6950 McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206 McGibbon, 2015, MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories, Biophys. J., 109, 1528, 10.1016/j.bpj.2015.08.015 Meredith, 2020, Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic surveillance study, Lancet Infect. Dis., 20, P1263, 10.1016/S1473-3099(20)30562-4 Michaud-Agrawal, 2011, MDAnalysis: a toolkit for the analysis of molecular dynamics simulations, J. Comput. Chem., 32, 2319, 10.1002/jcc.21787 Minh, 2020, IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era, Mol. Biol. Evol., 37, 1530, 10.1093/molbev/msaa015 Mueller, 2020, Viral genomes reveal patterns of the SARS-CoV-2 outbreak in Washington State, medRxiv Murshudov, 2011, REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr. D Biol. Crystallogr., 67, 355, 10.1107/S0907444911001314 Oude Munnink, 2021, Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans, Science, 371, 172, 10.1126/science.abe5901 Paradis, 2019, ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R, Bioinformatics, 35, 526, 10.1093/bioinformatics/bty633 Perez, 2007, IPython: A System for Interactive Scientific Computing, Comput. Sci. Eng., 9, 21, 10.1109/MCSE.2007.53 Pettersen, 2021, UCSF ChimeraX: Structure visualization for researchers, educators, and developers, Protein Sci., 30, 70, 10.1002/pro.3943 Piccoli, 2020, Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology, Cell, 183, 1024, 10.1016/j.cell.2020.09.037 Pinto, 2020, Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody, Nature, 583, 290, 10.1038/s41586-020-2349-y Rambaut, 2020, A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology, Nat. Microbiol., 5, 1403, 10.1038/s41564-020-0770-5 Riblett, 2015, A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection, J. Virol., 90, 1414, 10.1128/JVI.02055-15 Robbiani, 2020, Convergent antibody responses to SARS-CoV-2 in convalescent individuals, Nature, 584, 437, 10.1038/s41586-020-2456-9 Robson, 2020, Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting, Mol. Cell, 79, 710, 10.1016/j.molcel.2020.07.027 Rodrigues, 2018, pdb-tools: a swiss army knife for molecular structures, F1000Res., 7, 1961, 10.12688/f1000research.17456.1 Rogers, 2020, Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model, Science, 369, 956, 10.1126/science.abc7520 Shajahan, 2020, Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2, Glycobiology Shang, 2020, Structural basis of receptor recognition by SARS-CoV-2, Nature, 581, 221, 10.1038/s41586-020-2179-y Shirts, 2000, COMPUTING: Screen Savers of the World Unite!, Science, 290, 1903, 10.1126/science.290.5498.1903 Simões, 2020, Suptavumab for the Prevention of Medically Attended Respiratory Syncytial Virus Infection in Preterm Infants, Clin. Infect. Dis., ciaa951 Starr, 2020, Prospective mapping of viral mutations that escape antibodies used to treat COVID-19, bioRxiv Starr, 2020, Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding, Cell, 182, 1295, 10.1016/j.cell.2020.08.012 Takada, 1997, A system for functional analysis of Ebola virus glycoprotein, Proc. Natl. Acad. Sci. USA, 94, 14764, 10.1073/pnas.94.26.14764 Tegally, 2020, Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa, medRxiv Tortorici, 2020, Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms, Science, 370, 950, 10.1126/science.abe3354 Volz, 2017, Scalable relaxed clock phylogenetic dating, Virus Evol., 3, vex025, 10.1093/ve/vex025 Volz, 2021, Evaluating the effects of SARS-CoV-2 Spike mutation D614G on transmissibility and pathogenicity, Cell, 10.1016/j.cell.2020.11.020 Volz, 2021, Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data, medRxiv Walls, 2020, Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell, 181, 281, 10.1016/j.cell.2020.02.058 Watanabe, 2020, Site-specific glycan analysis of the SARS-CoV-2 spike, Science, 369, 330, 10.1126/science.abb9983 Wec, 2020, Broad neutralization of SARS-related viruses by human monoclonal antibodies, Science, 369, 731, 10.1126/science.abc7424 Weisblum, 2020, Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants, eLife, 9, e61312, 10.7554/eLife.61312 Weissman, 2021, D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization, Cell Host Microbe, 29, 23, 10.1016/j.chom.2020.11.012 Wrapp, 2020, Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies, Cell, 181, 1004, 10.1016/j.cell.2020.04.031 Wrapp, 2020, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, 367, 1260, 10.1126/science.abb2507 Wu, 2020, A new coronavirus associated with human respiratory disease in China, Nature, 579, 265, 10.1038/s41586-020-2008-3 Wu, 2020, Substantial underestimation of SARS-CoV-2 infection in the United States, Nat. Commun., 11, 4507, 10.1038/s41467-020-18272-4 Yurkovetskiy, 2020, Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant, Cell, 183, 739, 10.1016/j.cell.2020.09.032 Zhang, 2020, SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity, Nature Communications, 10.1038/s41467-020-19808-4 Zhao, 2020, Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor, Cell Host Microbe, 28, 586, 10.1016/j.chom.2020.08.004 Zimmerman, 2020, SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome, bioRxiv