In vitro anticancer efficacy by magnetic targeted nanocarrier with local delivery of paclitaxel

Chemical Research in Chinese Universities - Tập 32 - Trang 149-154 - 2015
Shubin Zhang1, Xue Qian1, Daihui Zhang2, Jinming Zhu3, Yi Wu4, Yi Guo1, Li Xu1
1Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
2Jilin Entry-exit Inspection and Quarantine Bureau, Changchun, P. R. China
3China-Japan Union Hospital of Jilin University, Changchun, P. R. China
4College of Pharmacy, Jilin University, Changchun, P. R. China

Tóm tắt

A magnetic nanoparticles-loaded polymeric nanocarrier was developed. Amphiphilic copolymer, methoxy polyethylene glycol-poly(D,L-lactide-co-glycolide)(MPEG-PLGA) could self-assemble to form nanomicelle with the help of emulsion-solvent evaporation technique. This nanocarrier with core-shell structure was loaded with magnetic iron oxide nanoparticles(IONPs) and anticancer drug paclitaxel(PTX). The hydrodynamic diameter of IONPs-PTX-loaded nanocarrier showed an average size of 110 nm with a polydispersity index(PDI) of 0.136, and its zeta potential was (–4.76±0.36) mV. The drug-loading content and encapsulation efficiency were 4.47% and 31.28%, respectively. In vitro drug release experiment was performed and a sustained release profile was observed. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT) assay indicated that IONPs-PTX-loaded nanocarrier showed comparable cytotoxicity with free paclitaxel. When an external magnetic field was applied, the nanocarrier significantly localized at the target area, demonstrating that the nanocarrier could be used for potential magnetic targeted drug delivery.

Tài liệu tham khảo

Siegel R. L., Miller K. D., Jemal A., CA-Cancer J. Clin., 2015, 65(1), 5 Wang H., Zhao Y., Wu Y., Hu Y. L., Nan K. H., Nie G. J., Chen H., Biomaterials, 2011, 32(32), 8281 Iyer A. K., Khaled G., Fang J., Maeda H., Drug Discov. Today, 2006, 11(17/18), 812 Nie S. M., Xing Y., Kim G. J., Simons J. W., Annu. Rev. Biomed. Eng., 2007, 9, 257 Obara K., Ishihara M., Ozeki Y., Ishizuka T., Hayashi T., Nakamura S., Saito Y., Yura H., Matsui T., Hattori H., Takase B., Ishihara M., Kikuchi M., Maehara T., J. Control. Release, 2005, 110(1), 79 Ruel-Gariepy E., Shive M., Bichara A., Berrada M., Garrec D. L., Chenite A., Leroux J. C., Eur. J. Pharm. Biopharm., 2004, 57(1), 53 Dordunoo S. K., Oktaba A. M. C., Hunter W., Min W., Cruz T., Burt H. M., J. Control. Release, 1997, 44(1), 87 Brito D. A., Yang Z. Y., Rieder C. L., J. Cell Biol., 2008, 182(4), 623 Elkharraz K., Faisant N., Guse C., Siepmann F., Arica-Yegin B., Oger J. M., Gust R., Goepferich A., Benoit J. P., Siepmann J., Int. J. Pharm., 2006, 314(2), 127 Ta H. T., Dass C. R., Dunstan D. E., J. Control. Release, 2008, 126(3), 205 Fujioka T., Taketani S., Nagasaki T., Matsumoto A., Bioconjugate Chem., 2009, 20(10), 1879 Haag R., Angew. Chem. Int. Ed., 2004, 43(3), 278 Mi Y., Liu Y. T., Feng S. S., Biomaterials, 2011, 32(16), 4058 Maeda H., Nakamura H., Fang J., Adv. Drug Deliv. Rev., 2013, 65(1), 71 Mi Y., Zhao J., Feng S. S., Nanomedicine, 2013, 8(10), 1559 Schroeder A., Heller D. A., Winslow M. M., Dahlman J. E., Pratt G. W., Langer R., Jacks T., Anderson D. G., Nat. Rev. Cancer, 2012, 12(1), 39 Mi Y., Guo Y. J., Feng S. S., Nanomedicine, 2012, 7(12), 1791 Lü Y. Y., Ding G. B., Zhai J. H., Guo Y., Nie G. J., Xu L., Colloid Surf. B, Biointerfaces, 2013, 110, 411 Ding G. B., Liu H. Y., Wang Y., Lv Y. Y., Wu Y., Guo Y., Xu L., Chem. Res. Chinese Universities, 2013, 29(1), 103 Wang Y., Wang X. Y., Lü Y. Y., Xu W. B., Guo Y., Xu L., Chem. J. Chinese Universities, 2013, 34(12), 2866 Chen F., Dong D., Fu Y., Zheng Y. H., Liu S., Chang M. X., Jing X. B., Chem. Res. Chinese Universities, 2012, 28(4), 656 Ding G. B., Wang Y., Guo Y., Xu L., ACS Appl. Mater. Interfaces, 2014, 6(19), 16643 Ding G. B., Liu H. Y., Lü Y. Y., Liu X. F., Guo Y., Sun C. K., Xu L., Chem., Eur. J., 2012, 18(44), 14037 Liu P., Situ J. Q., Li W. S., Shan C. L., You J., Yuan H., Hu F. Q., Du Y. Z., Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11(4), 855 Ahmed F., Discher D. E., J. Control. Release, 2004, 96(1), 37 Sobczak M., Korzeniowska A., Gos P., Kolodziejski W. L., Eur. J. Med. Chem., 2011, 46(7), 3047 Song Z. M., Feng R. L., Sun M., Guo C. Y., Gao Y., Li L. B., Zhai G. X., J. Colloid Interface Sci., 2011, 354(1), 116 Kim S., Shi Y. Z., Kim J. Y., Park K., Cheng J. X., Expert Opin. Drug Deliv., 2010, 7(1), 49 Xiong X. B., Mahmud A., Uludag H., Lavasanifar A., Pharm. Res., 2008, 25(11), 2555 Soppimath K. S., Liu L. H., Seow W. Y., Liu S. Q., Powell R., Chan P., Yang Y. Y., Adv. Funct. Mater., 2007, 17(3), 355 Banerjee S. S., Chen D. H., J. Nanopart. Res., 2009, 11(8), 2071 Tian J., Stella V. J., J. Pharm. Sci., 2010, 99(3), 1288 Morgan M. T., Nakanishi Y., Kroll D. J., Griset A. P., Carnahan M. A., Wathier M., Oberlies N. H., Manikumar G., Wani M. C., Grinstaff M. W., Cancer Res., 2006, 66(24), 11913 Yang X. Q., Grailer J. J., Pilla S., Steeber D. A., Gong S. Q., Shuai X. T., J. Biofabrication, 2010, 2(2), 025004