ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

Nuclear Data Sheets - Tập 107 - Trang 2931-3060 - 2006
M.B. Chadwick1, P. Obložinský2, M. Herman2, N.M. Greene3, R.D. McKnight4, D.L. Smith4, P.G. Young1, R.E. MacFarlane1, G.M. Hale1, S.C. Frankle1, A.C. Kahler1,5, T. Kawano1, R.C. Little1, D.G. Madland1, P. Moller1, R.D. Mosteller1, P.R. Page1, P. Talou1, H. Trellue1, M.C. White1
1Los Alamos National Laboratory, Los Alamos, NM 87545
2National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000
3Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6171
4Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439-4842
5Bettis Atomic Power Laboratory, P.O. Box 79, West Mifflin, PA 15122

Tài liệu tham khảo

C. Dunford, “A CSEWG retrospective: 35th anniversary, Cross Section Evaluation Working Group,” Tech. Rep. BNL-52675, Brookhaven National Lab, November 2001 C. Dunford, “Some CSEWG recollections,” Tech. Rep. In Report BNL-52675 [1], p.29, Brookhaven National Lab, November 2001 M. Herman (editor), “ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII,” Tech. Rep. BNL-NCS-44945-05-Rev, Document ENDF-102, Brookhaven National Lab, June 2005 M. Chadwick, P. Obložinský, A. Blokhin, T. Fukahori, Y. Han, Y.-O. Lee, M. Martins, S. Mughabghab, V. Varlamov, B. Yu, and J. Zhang, “Handbook on Photonuclear Data for Applications: Cross-sections and Spectra,” Tech. Rep. IAEA-TECDOC-1178, International Atomic Energy Agency, October 2000 M. Mattes and J. Keinert, “Thermal neutron scattering data for the moderator materials H2O, D2O, and ZrHx in ENDF-6 format and as ACE library for MCNP(X) codes,” report INDC(NDS)-0470, IAEA, April 2005 V.G. Pronyaev, S.A. Badikov, A.D. Carlson, Z. Chen, E.V. Gai, G.M. Hale, F.-J. Hambsch, H.M. Hofmann, N.M. Larson, D.L. Smith, S.-Y. Oh, S. Tagesen, and H. Vonach, “An international evaluation of the neutron cross section standards,” tech. rep., International Atomic Energy Agency, 2006. to be published as an IAEA Technical Report “SCALE: A modular code system for performing standardized computer analysis for licensing evaluation.” NUREG/CR-0200, Rev. 6 (ORNL/NUREG/CSD-2/R6), Vols. I, II, and III, May 2000. Available from the Radiation Safety Information Computational Center at Oak Ridge National Lab as CCC-545, 2000 R.E. MacFarlane and D.W. Muir, “The NJOY nuclear data processing system, version 91,” Tech. Rep. LA-12740-M, Los Alamos National Lab, NM, 1994 R. MacFarlane, “NJOY nuclear data processing code, version 2006.” Nuclear Data Sheets, to be published LANL, “Webpage, T-2 Information Service, Los Alamos National Lab.” t2.lanl.gov, 2006 K. Kosako, “Covariance Data Processing Code: ERRORJ,” in the Specialists' Meeting of Reactor Group Constants (J. Katakura, ed.), JAERI, Tokai, Japan, February 22–23, 2001. JAERI-Conf 2001-009 D. Wiarda and M. Dunn, “PUFF-IV: Code System to Generate Multigroup Covariance Matrices from ENDF/B-VI Uncertainty Files.” Oak Ridge National Lab, Radiation Safety Information Computational Center (RSICC) Code Package PSR-534, 2006 M. Dunn and N. Greene, “AMPX-2002: A Cross Section Processing System for Generating Nuclear Data for Criticality Safety Applications,” Tech. Rep. Trans. Am. Nucl. Soc., ORNL, 2002 Dunford X5-MCNP-Team, “MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Volume I: Overview and Theory,” Tech. Rep. LA-UR-03-1987, Los Alamos National Lab, April 2003 J. Briesmeister et al., “MCNP – A general Monte Carlo N-particle transport code, version 4C,” Tech. Rep. LA-13709-M, Los Alamos National Lab, 2000 Pritychenko, 2006, Nuclear reaction and structure data services of the National Nuclear Data Center, Ann. Nucl. Energy, 33, 390, 10.1016/j.anucene.2005.10.004 P.G. Young, E.D. Arthur, and M.B. Chadwick, “Comprehensive nuclear model calculations: Introduction to the theory and use of the GNASH code,” Tech. Rep. LA-12343-MS, Los Alamos National Lab, Los Alamos, 1992 P.G. Young and E.D. Arthur, “GNASH: A preequilibrium statistical nuclear model code for calculations of cross sections and esmission spectra,” Tech. Rep. LA-6947, Los Alamos National Lab, Los Alamos, 1977 Young, 1998, Comprehensive nuclear model calculations: Theory and use of the GNASH code, 227 Herman, 2005, Recent developments of the nuclear reaction model code EMPIRE, 1184 Herman, 2002, Recent extensions and use of the statistical model code EMPIRE-II - version: 2.17 Millesimo, vol. 12, 271 Herman, 2001, EMPIRE-II statistical model code for nuclear reaction calculations, vol. 5, 137 Herman J. Raynal, Notes on ECIS. CEA-N-2772, Commissariat à l'Energie Atomique, 1994 G.M. Hale, “Use of R-matrix methods for light element evaluations,” in Proc. of the Conference on Nuclear Data Evaluation Methods and Procedures (B. Magurno and S. Pearlstein, eds.), pp. 509–531, Brookhaven National Lab, Upton, NY, BNL-NCS-51363, 1981 N.M. Larson, “Updated users' guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes' equations,” Tech. Rep. ORNL/TM-9179/R7, Document ENDF-364, Oak Ridge National Lab, TN, 2006. S. Oh, J. Chang, and S.F. Mughabghab, “Neutron cross section evaluations of fission products below the fast neutron region,” Tech. Rep. BNL-NCS-67469, Brookhaven National Lab., 2000 Mughabghab, 2006 Hofmann, 1987, Models and methods in few-body physics, vol. 273 Hofmann, 1997, Microscopic calculation of the 4He system, Nuclear Physics, A 613, 69, 10.1016/S0375-9474(96)00418-6 A. Ignatyuk, P. Obložinský, M. Chadwick, T. Fukahori, S. Kailas, G. Molnar, G. Reffo, Z. Su, M. Uhl, and P. Young, “Handbook for calculations of nuclear reaction data: Reference Input Parameter Library,” Technical report IAEA-TECDOC-1034, International Atomic Energy Agency, Vienna, Austria, 1998 P. Young, M. Herman, P. Obložinský, T. Belgya, O. Bersillon, R. Capote, T. Fukahori, G. Zhigang, S. Goriely, A. Ignatyuk, S. Kailas, A. Koning, and V. Plujko, “Handbook for calculations of nuclear reaction data, RIPL-2,” TECDOC-1506, IAEA, Vienna, 2006 N. Larson and K. Volev, “Validation of multiple-scattering corrections in the analysis code SAMMY,” in Inter. Conf. on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing (Physor 2002), p. A0203, Seoul, South Korea, 2002 N. Larson, “On the efficient treatment of data covariance matrices,” in 71st Annual Meeting of the Southeastern Section of the APS, Oak Ridge, TN, November 11 – 13, 2004, Amer. Inst. of Physics Larson, 2005, Treatment of data uncertainties, 374 F. Fröhner, B. Goel, and U. Fischer, “FITACS computer code,” Tech. Rep. Report ANL-83-4, p.116, Kernforschungszentrum Karslruhe, 1982. Note: Presented at Specialists' Meeting on Fast Neutron Capture Cross Sections, ANL Mughabghab, 1981 Mughabghab, 1984 M. Herman et al., “Neutron reaction evaluation methodology at the NNDC,” under preparation Garg, 1981, Neutron widths and level spacings of 64Zn + n, Phys. Rev., C 23, 671 Bollinger, 1968, p-Wave Resonances of 238U, Phys. Rev., 171, 1293, 10.1103/PhysRev.171.1293 S.T. Perkins and G.E. Gyulassy, “An Integrated System for Production of Neutronics and Photonics Calculational Constants,” Tech. Rep. UCRL-50400, Vol. 12, Univ. of California, 1972 Porter, 1956, Fluctuations of Nuclear Reaction Widths, Phys. Rev., 104, 483, 10.1103/PhysRev.104.483 Axel, 1962, Electric dipole ground state transition width strength function and 7 MeV photon interaction, Phys. Rev., 126, 671, 10.1103/PhysRev.126.671 D.M. Brink, Unpublished. D. Phil. thesis, Oxford University, 1955 Kopecky, 1990, Test of gamma-ray strength functions in nuclear-reaction model-calculations, Phys. Rev. C, 41, 1941, 10.1103/PhysRevC.41.1941 Mughabghab, 2000, A dipole-quadrupole interaction term in E1 photon transitions, Phys. Lett., B 487, 155, 10.1016/S0370-2693(00)00792-9 V. Plujko and M. Herman, Handbook for calculations of nuclear reaction data, RIPL-2, ch. Chapter 7: Gamma-ray strength functions, p. 120. No. in press, IAEA, Vienna, 2006 Moldauer, 1976, Evaluation of the fluctuation enhancement factor, Phys. Rev. C, 14, 764, 10.1103/PhysRevC.14.764 Hofmann, 1975, Direct reactions and Hauser-Feshbach theory, Ann. Phys., 90, 403, 10.1016/0003-4916(75)90005-6 Nishioka, 1986, Statistical theory of precompound reactions: The multistep compound process, Ann. Phys., 172, 67, 10.1016/0003-4916(86)90020-5 C. Dunford, “Compound nuclear analysis programs COMNUC and CASCADE,” Tech. Rep. T1-707-130-013, Atomics International, 1971 Hofmann, 1980, Calculation in the Presence of Weakly Absorbing Channels with Special Reference to the Elastic Enhancement Factor and Factorization Assumption, Z. Physik, A 297, 153, 10.1007/BF01421472 Gadioli, 1992 Kalbach, 1988, Systematics of continuum angular distributions: Extensions to higher energies, Phys. Rev. C, 37, 2350, 10.1103/PhysRevC.37.2350 Feshbach, 1980, The statistical theory of multi-step compound and direct reactions, Ann. Phys. (N.Y.), 125, 429, 10.1016/0003-4916(80)90140-2 E. Běták and P. Obložinský, “Code PEGAS: Preequilibrium exciton model with spin conservation and gamma emission,” Tech. Rep. INDC(SLK)-001, IAEA/Slovak Academy of Sciences, 1993. Note: DEGAS is an extended version of the code PEGAS using two-parameteric p-h level densities Blann, 1996, New precompound decay model, Phys. Rev. C, 54, 1341, 10.1103/PhysRevC.54.1341 Blann, 1998, New precompound model: Angular distributions, Phys. Rev. C, 57, 233, 10.1103/PhysRevC.57.233 Blann, 2000, Precompound Monte-Carlo model for cluster induced reactions, Phys. Rev. C, 6203, 4604 Chadwick, 1994, Multiple preequilibrium emission in Feshbach-Kerman-Koonin analyses, Phys. Rev. C, 50, 996, 10.1103/PhysRevC.50.996 Tamura, 1982, Multistep direct reaction analysis of continuum spectra in reactions induced by light ions, Phys. Rev., C26, 379 Herman, 1992, Multistep-compound contribution to precompound reaction cross section, Nucl. Phys., A536, 124, 10.1016/0375-9474(92)90249-J Kalbach, 1981, Phenomenology of continuum angular distributions. I. Systematics and parametrization, Phys. Rev. C, 23, 112, 10.1103/PhysRevC.23.112 Iwamoto, 1982, Mechanism of cluster emission in nucleon-induced preequilibrium reactions, Phys. Rev. C, 26, 1821, 10.1103/PhysRevC.26.1821 Sato, 1983, Pre-equilibrium emission of light composite particles in the framework of the exciton model, Phys. Rev. C, 28, 1527, 10.1103/PhysRevC.28.1527 J.S. Zhang and X.G. Shi et al., “The Formulation of UNIFY Code for the Calculation of Fast Neutron Data for Structural Materials,” Report INDC(CPR)-014, IAEA, Vienna, 1989 J.S. Zhang et al., “Formation and Emission of Light Particles in Fast Neutron-induced Reaction – A Unified Compound Pre-equilibrium Model,” Report INDC(NDS)-193, IAEA, Vienna, 1988. p. 21 Madland, 1982, New calculation of prompt fission neutron-spectra and average prompt neutron multiplicities, Nucl. Sci. and Eng., 81, 213, 10.13182/NSE82-5 C. Lubitz, “A modification in ENDF/B-VI 235U to increase epithermal alpha and k1,” in Proc. of the Inter. Conf. on Nuclear Data for Science and Technology, Gatlinburg, USA, 1994 H. Weigmann, J. Hambsch, W. Mannhart, Mamoru Baba, Liu Tingjin, N. Kornilov, D. Madland, and P. Staples, “Fission neutron spectra of uranium-235,” Report NEA/WPEC-9, OECD, 2003 Boykov, 1991, Sov. J. Nucl. Phys., 53, 392 W. Younes and J.A. Becker, “The 225U(n, 2n) Cross Section: Preliminary Calculations,” Tech. Rep. UCRL-ID-137718, Lawrence Livermore National Lab, CA, 1999 L.C. Leal, H. Derrien, N.M. Larson, and A. Courcelle, “An Unresolved Resonance Evaluation for 235U,” in PHYSOR Conference, Chicago, Illinois, April 25–29, 2004 J.A. Harvey, “High Resolution Neutron Transmission Measurements on 235U, 239Pu and 238U,” in Proc. of the Inter. Conf. on Nuclear Data for Science and Technology, (Mito, Japan), JAERI, 1988 H. Derrien, J.A. Harvey, N.M. Larson, L.C. Leal, and R.Q. Wright, “Neutron Total Cross Sections of 235U from Transmission Measurements in the Energy Range 2 keV to 300 keV and Statistical Model Analysis of the Data,” tech. rep., Oak Ridge National Lab, 2000 Weston, 1984, Subthreshold Fission Cross Section of 240Pu and the Fission Cross Sections of 235U and 239Pu, Nucl. Sci. Eng., 88, 567, 10.13182/NSE84-A18373 Weston, 1964, Ratio of Capture to Fission in 235U at keV Neutron Energies, Nucl. Sci. Eng., 20, 80, 10.13182/NSE64-A19277 López Jiménez, 2005, Overview of Recent Bruyères-le-Châtel Actinide Evaluations, 314 J. Frehaut, “Coherent evaluation of nu-bar (prompt) for 235,238U and 239Pu,” Tech. Rep. JEFDOC-17, NEA, JEFF project, 2000 Baba, 1990, Measurement of double-differential neutron emission spectra from uranium-238, J. Nucl. Sci. Tech., 27, 601, 10.3327/jnst.27.601 G. Lovchikova et al. XIV international Workshop on Nuclear Fission Physics, 2000 Ethvignot, 2003, Phys. Lett. B, 575, 221, 10.1016/j.physletb.2003.09.048 Y. Kanda and M. Baba, “WPEC-SG4 Report: 238U capture and related cross sections,” Tech. Rep. WPEC/SG4, NEA Paris J.B. Briggs et al., “International handbook of evaluated criticality safety benchmark experiments,” Tech. Rep. NEA/NSC/DOC(95)04/I, Nuclear Energy Agency, Paris, France, 2004. The 2006 Edition of the ICSBEP Handbook is available on DVD media and can be requested from a link on the http://icsbep.inl.gov/handbook.shtml website M. Moxon and M. Sowerby, “Summary of the work of the NEANDC task force on 238U,” Tech. Rep. NEANDC-313U, OECD Nuclear Energy Agency, Paris, 1994 Courcelle, 2005, First conclusions of the WPEC Subgroup-22, 462 Derrien, 2005, Evaluation of 238U Resonance Parameters from 0 to 20 keV, 276 de Saussure, 1973, Measurement of the Uranium-238 Capture Cross Section for Incident Neutron Energies up to 100 keV, Nucl. Sci. Eng., 5, 385, 10.13182/NSE73-1 Olsen, 1977, Precise Measurement and Analysis of Neutron Transmission Through Uranium-238, Nucl. Sci. Eng., 62, 479, 10.13182/NSE77-A26986 Olsen, 1979, Measurement and resonance analysis of neutron transmission through Uranium-238, Nucl. Sci. Eng., 479, 202, 10.13182/NSE79-A20611 H. Kitazawa and Y. Harima, “High Energy Resolution Measurement of the 238U Neutron Capture Yield in the Energy Region Between 1 and 100 keV,” in Proc. of the Inter. Conf. on Nuclear Data for Science and Technology, (Mito, Japan), JAERI, 1988 Trkov, 2005, Revisiting the 238U thermal capture cross-section and gamma emission probabilities from 239Np decay, Nucl. Sci. Eng., 150, 336, 10.13182/NSE05-A2520 Fröhner, 1988, Evaluation of the Unresolved Resonance Range of 238U, Nucl. Sci. Eng., 103, 119, 10.13182/NSE89-A28501 Staples, 1995, Nucl. Phys. A, 591, 41, 10.1016/0375-9474(95)00119-L R.W. Lougheed et al., “239Pu and 241Am (n,2n) cross section measurements near 14 MeV,” Tech. Rep. UCRL-ID-145592, Lawrence Livermore National Lab, CA, 2001 M.B. Chadwick, P.G. Young, and D. McNabb, “Evaluation of the 239Pu(n, 2n) cross section,” Tech. Rep. Memorandum T-16-MBC00/10, Los Alamos National Lab, Los Alamos (2000), October 2, 2000 Bernstein, 2002, Phys. Rev., C6502, 1601 L.C. Leal, H. Derrien, J.A. Harvey, K.H. Guber, N.M. Larson, and R.R. Spenser, “R-Matrix Resonance Analysis and Statistical Properties of the Resonance Parameters of 233U in the Neutron Energy Range from Thermal to 600 eV,” Tech. Rep. ORNL/TM-2000, ENDF-365, Oak Ridge National Lab, Oak Ridge, TN, 2001 Leal, 2005, An Unresolved Resonance Evaluation 233U from 600 eV to 40 keV, Trs. Am. Nucl. Sci., 92 Guber, 2001, High-Resolution Transmission Measurements of 233U Using a Cooled Sample at the Temperature T = 11°K, Nucl. Sci. Eng., 139, 111, 10.13182/NSE01-A2226 Weston, 1968, Measurement of the Neutron Fission and Capture Cross Sections for 233U in the Energy Region 0.4 to 2000 eV, Nucl. Sci. Eng., 34, 1, 10.13182/NSE68-A19361 Hopkins, 1962, Neutron Capture to Fission Ratios in 233U, 235U, 239Pu, Nucl. Sci. Eng., 12, 169, 10.13182/NSE62-A26055 Younes, 2003, Neutron-induced fission cross sections simulated from (t,pf) results, Phys. Rev. C, 67, 024610, 10.1103/PhysRevC.67.024610 Plettner, 2005, Estimation of (n,f) cross sections by measuring reaction probability ratios, Phys. Rev. C, 71, 051602, 10.1103/PhysRevC.71.051602 Derrien, 1990, R-matrix analysis of the 241Pu neutron cross-sections in the thermal to 300-ev energy range, Nuc. Sci. Eng., 106, 415, 10.13182/NSE90-A23767 Wagemans, 1992, Measurement of the subthermal neutron induced fission cross-section of 241Pu H. Derrien, “Revision of the 241Pu Reich-Moore resonance parameters by comparison with recent fission cross-section measurements,” tech. rep., JAERI, 1994 C. Chabert, A. Santamarina, and P. Bioux, “Trends in nuclear data derived from integral experiments in thermal and epithermal reactors,” in Proc. of the Inter. Conf. on Nuclear Data for Science and Technology, Tsukuba, 2002 Derrien, 2005, Re-evaluation and validation of the 241Pu resonance parameters in the energy range thermal to 20 eV, Nuc. Sci. Eng., 150, 109, 10.13182/NSE150-109 Rochman, 2006, Modeling and fission cross sections for Americium, Nucl. Sci. Eng., 154, 280, 10.13182/NSE06-A2633 P. Talou, T. Kawano, P. Young, M. Chadwick, and R. MacFarlane, “Improved evaluations of neutron-induced reactions on Americium isotopes,” accepted for publication in Nucl. Sci. Eng., 2006 W. Younes, H.C. Britt, and J.A. Becker, “Estimated (n,f) cross sections for 236,236m,237,238Np, 237,237mPu, and 240,241,242,242m,243,244,244mAm isotopes,” Livermore Report UCRL-TR-201913, LLNL, 2004 S. Ohki, K. Yokoyama, K. Numata, and T. Jin, “Target accuracy of Am nuclear data and progress in validation by post irradiation experiments with the fast reactor JOYO,” in Proc. of the 2003 Symposium on Nuclear Data, p. 40, 2004. Nov. 27–28, 2003, JAERI, Tokai, Japan Perdikakis, 2006, Meaurements of the 241Am(n,2n) reaction cross sections using the activation method, Phys. Rev. C, 73, 067601, 10.1103/PhysRevC.73.067601 Bjornholm, 1980, The double-humped fission barrier, Rev. Mod. Phys., 52, 725, 10.1103/RevModPhys.52.725 A. Trkov, “2nd IAEA Research Co-ordination Meeting on Evaluated Nuclear Data for Thorium-Uranium Fuel Cycle,” Technical report INDC(NDS)-447, IAEA, Vienna, 2003 A. Trkov, “Evaluated Nuclear Data for Th-U Fuel Cycle Summary Report of the Third Research Coordination Meeting,” Technical report INDC(NDS)-494, IAEA, Vienna, 2006 L. Leal and H. Derrien, “Evaluation of the resonance parameters for 232Th in the energy range 0 to 4 keV,” technical report, Oak Ridge National Lab, 2006. In preparation D. Olsen and R. Ingle, “Measurement of Neutron Transmission Spectra through 232Th from 8 MeV to 4 keV,” Report ORNL/TM-7661(ENDF-307), Oak Ridge National Lab, 1981 G. Morogovskij and L.A. Bakhanovich, “Evaluation of the resolved resonance region for Pa-233,” Series: Nuclear Constants, no. 1–2, 2003. Translated in INDC(CCP)-440, International Atomic Energy Agency, Vienna September 2004 I. Sirakov, P. Schillebeeckx, R. Capote, and A. Trkov, “232Th: Evaluation of the average resonance parameters and their covariances in the unresolved resonance region from 4 to 100 keV.” Private Communication, September 2006 V. Maslov, M. Baba, A. Hasegawa, N. Kornilov, A. Kagalenko, and N. Tetereva, “Neutron Data Evaluation of 231Pa,” Technical report INDC(BLR)-19, IAEA, Vienna, 2004 V. Maslov, M. Baba, A. Hasegawa, N. Kornilov, A. Kagalenko, and N. Tetereva, “Neutron Data Evaluation of 233Pa,” Tech. Rep. INDC(BLR)-20, IAEA, Vienna, 2004 R. Capote, M. Sin, and A. Trkov, “Evaluation of fast neutron induced reactions on 232Th and 231,233Pa up to 60 MeV.” to be published Sin, 2005, Improvement of the fission channel in the EMPIRE code, 1249 Soukhovitskii, 2005, Dispersive coupled-channel analysis of nucleon scattering from 232Th up to 200 MeV, Phys. Rev. C, 72, 024604, 10.1103/PhysRevC.72.024604 Hauser, 1952, The inelastic scattering of neutrons, Phys. Rev., 87, 366, 10.1103/PhysRev.87.366 Sin, 2006, Fission of light actinides: 232Th(n,f) and 231Pa(n,f) reactions, Phys. Rev. C, 74, 014608, 10.1103/PhysRevC.74.014608 Aerts, 2006, Neutron capture cross section of 232Th measured at the n-TOF facility at CERN in the unresolved resonance region up to 1 MeV, Phys. Rev. C, 73, 054610, 10.1103/PhysRevC.73.054610 A. Ignatyuk, V. Lunev, Y. Shubin, E. Gai, and N. Titarenko, “Evaluation of n + 232Th cross sections for the energy range up to 150 MeV.” Provided to the IAEA CRP on Th-U cycle, 2006 A. Trkov and R. Capote, “Validation of 232Th evaluated nuclear data through benchmark experiments,” in Proc. of the Inter. Conf. on Nuclear Energy for New Europe 2006, Portorož, Slovenia, September 18–21, 2006, to be published Madland, 2006, Total prompt energy release in the neutron-induced fission of 235U, 238U, and 239Pu, Nucl. Phys., A772, 113, 10.1016/j.nuclphysa.2006.03.013 ICRU-Report-63, in Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection, Bethesda, MD: International Commission on Radiation Units and Measurements, 2000 D. Muir, “Gamma rays, Q-values and kerma factors,” Tech. Rep. LA-6258-MS, Los Alamos National Lab, Los Alamos, 1976 J. Rowlands, “The incident neutron energy dependence of the prompt energy yield in fission,” SERCO document CCU0516 SA/NST/17729/W001, Issue 2, August 2006 G. Rudstam, P. Fink, A. Filip, A. D'Angelo, and R. McKnight, “Delayed neutron data for the major actinides,” Tech. Rep. NEA/WPEC-6, Paris, 2002 Kratz, 1973, Systematics of neutron emission probabilities from delayed neutron precursors, Z. Physik, 363, 435, 10.1007/BF01391992 Mann, 1982, Beta decay properties using a statistical model, Phys. Rev., C25, 524 M. Brady, “Evaluation and application of delayed neutron precursor data,” Tech. Rep. LA-11534-T, Los Alamos National laboratory, Los Alamos, 1989 T. England and B. Rider, “Nuclear modeling of the 239Pu(n, xn) excitation function,” Tech. Rep. LA-UR-94-3106 ENDF-349, Los Alamos National laboratory, Los Alamos, 1993 Wilson, 2002, Delayed neutron study using ENDF/B-VI basic nuclear data, Prog. Nucl. Energy, 41, 71, 10.1016/S0149-1970(02)00006-9 Pfeiffer, 2002, Status of delayed-neutron data: half-lives and neutron emission probabilities, Prog. Nucl. Energy, 41, 39, 10.1016/S0149-1970(02)00005-7 Audi, 2003, The NUBASE evaluation of nuclear and decay properties, Nucl. Phys., A729, 3, 10.1016/j.nuclphysa.2003.11.001 Moller, 2003, New calculations of gross beta decay properties for astrophysical applications: Speeding up the classical r-process, Phys. Rev., C67, 055802 Moller, 1995, Nuclear ground-state masses and deformations, Atomic Data Nucl. Data Tables, 59, 185, 10.1006/adnd.1995.1002 Moller, 1997, Nuclear properties for astrophysical and radioactive-ion-beam applications, At. Data Nucl. Data Tables, 66, 131, 10.1006/adnd.1997.0746 Brady, 1989, Delayed neutron data and group parameters for 43 fissioning systems, Nucl. Sci. Eng., 103, 129, 10.13182/NSE103-129 Keepin, 1965 Conant, 1971, Delayed neutron data, Nuc. Sci. Eng., 44, 173, 10.13182/NSE71-A19665 Tuttle, 1975, Delayed neutron data, Nuc. Sci. Eng., 56, 37, 10.13182/NSE75-A26620 Ohsawa, 1999, Possible fluctuations in delayed neutron yields in the resonance region of U-235, 43 Ohsawa, 2004, An interpretation of energy-dependence of delayed neutron yields in the resonance region for 235U and 239Pu, Nuc. Sci. Eng., 148, 50, 10.13182/NSE04-A2440 Nakajima, 2001, Re-evaluation of the effective delayed neutron fraction measured by the substitution technique for a light water moderated low-enriched uranium core, J. Nucl. Sci. Techn., 38, 1120, 10.3327/jnst.38.1120 Sakurai, 2002, Adjustment of delayed neutron yields in jendl-3.2, J. Nuc. Sci. Tech., 39, 19, 10.3327/jnst.39.19 Analyzed β-effective in the JAERI Tank Critical Assembly (TCA, 2.6% enriched) and recommended 0.01586 ± 1.8%, the value adopted for JENDL-3.3 S. van der Marck, “Benchmarking ENDF/B-VII beta1.” CSEWG 2005 meeting report, www.nndc.bnl.gov/csewg/, 2005. Analyzed TCA, IPEN/MB-01, Stacy, Winco, and Proteus thermal β-effective measurements and found JENDL-3.3 to be superior to ENDF/B-VI.8 Y. Chao. Westinghouse, Private Communication, 2006 M. Brady. PNNL, Private Communication, 2006 Pruet, 2005, Neutron and photon transport in sea-going cargo containers, J. Appl. Phys., 97, 094908, 10.1063/1.1887835 Pruet, 2004, Monte Carlo models for the production of β-delayed gamma-rays following fission of special nuclear materials, Nuclear Instruments and Methods, B 222, 403, 10.1016/j.nimb.2004.03.062 D. Brown, J. Pruet, G. Hedstrom, J. Hall, and M.-A. Descalle, “Proposal for ENDF formats that describe emission of post-fission β-delayed photons,” Report UCRL-TR-206607, Lawrence Livermore National Lab, 2004 D. Brown, “Translating post-fission β-delayed γ data for 239Pu into ENDF format,” Tech. Rep. UCRL-TR-223148, Lawrence Livermore National Lab, 2006 R.Q. Wright and R.E. MacFarlane, “Review of ENDF/B-VI fission-product cross sections,” Tech. Rep. ORNL/TM-13723, Oak Ridge National Lab, Oak Ridge, TN, 2000 Obložinský M.D. DeHart, “Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages,” Tech. Rep. ORNL/TM-12973, Oak Ridge National Lab, 1995 Y.D. Lee, J. Chang, and P. Obložinský, “Neutron cross section evaluations of fission products in the fast energy region,” in Proc. of the Inter. Conf. on Nuclear Data for Science and Technology, p. 168, Tsukuba, 2002 Lee, 2005, Fission product evaluations for the selected nuclei, 378 H.-I. Kim, Y.-O. Lee, M. Herman, S.F. Mughabghab, P. Obložinský, and D. Rochman, “New ENDF/B-VII.0 Evaluation of Neutron Cross Sections on 32 Fission Products,” Tech. Rep. under preparation, Brookhaven National Lab D. Rochman, M. Herman, S. Mughabghab, and P. Obložinský, “New evaluation of the 99Tc neutroninduced cross sections for the ENDF/B-VII.0 library,” Tech. Rep. BNL-75892-2006-JA-R1, Brookhaven National Lab, 2006 Iwamoto, 2005, Neutron cross-section evaluations for 70,72,73,74,76-Ge, 434 D. Rochman et al., “Evaluation of neutron induced reactions on 8 isotopes of Gd for ENDF/B-VII.0,” Tech. Rep. under preparation, Brookhaven National Lab D. Rochman, M. Herman, P. Obložinský, S. Mughabghab, T. Kawano, and L. Leal, “Evaluation of covariance data for Gd isotopes.” under preparation G. Leinweber et al., “Neutron capture and transmission measurements and resonance parameter analysis of gadolinium,” Nucl. Sci. Eng., November 2006. See also Report LM-05K107, June 2005 R. Capote and E.S. Soukhovitskii. Dispersive Optical Potential for 103Rh, Private communication, 2006 Capote, 2005, Is a global coupled-channel dispersive optical model potential for actinides feasible?, Phys. Rev. C, 72, 064610, 10.1103/PhysRevC.72.064610 Soukhovitskii, 2005, Dispersive coupled-channel analysis of nucleon scattering from 232Th up to 200 MeV, Phys. Rev. C, 72, 024604, 10.1103/PhysRevC.72.024604 Obložinský P. Obložinský, M. Herman, S. Mughabghab, I. Sirakov, J. Chang, T. Nakagawa, K. Shibata, M. Kawai, A. Ignatyuk, V. Pronyaev, V. Zerkin, S. Qingbiao, and Z. Youxiang, “Assessment of neutron cross-section evaluations for the bulk of fission products,” Tech. Rep. NEA/WPEC-21, OECD Nuclear Energy Agency, Paris, 2005 Chadwick, 1999, Cross section evaluations to 150 MeV for accelerator-driven systems and implementation in MCNPX, Nucl. Sci. Eng., 131, 293, 10.13182/NSE98-48 Cokinos, 1977, Measurement of the 2200 m/sec neutron-proton capture cross section, Phys. Rev., C15, 1636 Schoen, 2003, Precision neutron interferometric measurements and updated evaluations of the n-p and n-d coherent neutron scattering lengths, Phys. Rev. C, 67, 044005, 10.1103/PhysRevC.67.044005 Houk, 1971, Neutron-proton scattering cross section at a few electron Volts and charge independence, Phys. Rev., C3, 1886 Dilg, 1975, Measurement of the neutron-proton total cross section at 132 eV, Phys. Rev., C11, 103 Boukharaba, 2002, Measurement of the n-p elastic scattering angular distribution at En = 10 MeV, Phys. Rev., C65, 014004 Buerkle, 1997, Measurement of the neutron-proton differential cross section at 14.1 MeV, Few Body Systems, 22, 11, 10.1007/s006010050050 Hale, 1990, Neutron-triton cross sections and scattering lengths obtained from p-3He scattering, Phys. Rev., C42, 438 Rochman, 2006, New evaluation of 51V(n, np+pn) and (n, t) cross sections for the ENDF/B-VII library, Fusion Engineering and Design, 81, 2109, 10.1016/j.fusengdes.2005.12.002 Grimes, 1978, Charged particle-producing reactions of 15-MeV neutrons on 51V and 93Nb, Phys. Rev. C, 17, 508, 10.1103/PhysRevC.17.508 Kokoo, 1999, Measurements of double-differential cross sections of charged-particle emission reactions for several structural elements of fusion power reactors by 14.1-MeV incident neutrons, Nuclear Science and Engineering, 132, 16, 10.13182/NSE99-A2046 Woelfle, 1990, Radiochimica Acta, 50, 5, 10.1524/ract.1990.50.12.5 Kawano, 2006, Production of isomers by neutron-induced inelastic scattering on 193Ir and influence of spin distribution in the preequilibrium process, Nucl. Instr. Meth., 562, 774, 10.1016/j.nima.2006.02.053 Koning, 2003, Local and global nucleon optical models from 1 keV to 200 MeV, Nucl. Phys., A713, 231, 10.1016/S0375-9474(02)01321-0 Koning, 2005, TALYS: Comprehensive nuclear reaction modeling, 1154 Smith, 1991 R. Kinsey, “ENDF-201: ENDF/B Summary Documentation,” Tech. Rep. BNL-NCS-17541, National Nuclear Data Center, BNL, July 1979. Note: 3rd Edition, ENDF/B-V Library B. Magurno, R. Kinsey, and F. Scheffel, “Guidebook for the ENDF/B-V Nuclear Data Files,” Tech. Rep. EPRI NP-2510, BNL-NCS-31451, ENDF-328, Brookhaven National Lab and Electric Power Research Institute, July 1982 Ishikawa, 2005, Recent Application of Nuclear Data to Fast Reactor Core Analysis and Design in Japan, 1405 Ishikawa, 2002, Development of a Unified Cross-section Set ADJ2000 Based on Adjustment Technique for Fast Reactor Analysis, J. Nucl. Sci. Technol., 1073 P.F. Rose (editor), “ENDF-201: ENDF/B-VI Summary Documentation,” Tech. Rep. BNL-NCS-17541, National Nuclear Data Center, BNL, October 1991. Note: For ENDF/B-VI.8 see www.nndc.bnl.gov/endf K. Kosako and N. Yanano, “Preparation of a covariance processing system for the evaluated nuclear data file, JENDL,” Tech. Rep. JNC TJ-9440, 99-003, JAERI, 1999. (in Japanese) T. Kawano, T. Ohsawa, K. Shibata, and H. Nakashima, “Evaluation of Covariance for Fission Neutron Spectra,” Tech. Rep. 99-009, JAERI, 1999. (in Japanese) M. Williams, “Generation of Approximate Covariance Data.” ORNL memo, August 2004 Wisshak, 1995, Stellar neutron capture cross sections of the Gd isotopes, Phys. Rev. C, 52, 2762, 10.1103/PhysRevC.52.2762 H. Derrien, L.C. Leal, and N.M. Larson, “Evaluation of 232Th Neutron Resonance Parameters in the Energy Range 0 to 4 keV,” Tech. Rep. ORNL/TM-2006/53, Oak Ridge National Lab, 2006 D. Smith, “Covariance matrices for nuclear cross sections derived from nuclear model calculations,” report ANL/NDM-159 November, Argonne National Lab, 2004 A. Trkov, “Summary report of the IAEA technical meeting,” INDC(NDS)-471, IAEA, Vienna, 2005 R.E. MacFarlane, “New thermal neutron scattering files for ENDF/B-VI release 2,” Tech. Rep. LA-12639-MS (1994), Los Alamos National Lab, Los Alamos, 1994 J. Koppel and D. Houston, “Reference manual for ENDF thermal neutron scattering data,” report GA-8774 revised and reissued as ENDF-269 by the National Nuclear Data Center, General Atomic, July 1978 Keinert, 1987, Investigation of neutron scattering dynamics in liquid hydrogen and deuterium for cold neutron sources, Kerntechnik, 51, 19, 10.1515/kern-1987-510110 Young, 1964, Slow neutron scattering by molecular hydrogen and deuterium, Phys. Rev., 135, A603, 10.1103/PhysRev.135.A603 Vineyard, 1957, Frequency factors and isotope effects in solid state rate processes, J. of Physics and Chemistry of Solids, 3, 121, 10.1016/0022-3697(57)90059-8 Stedman, 1967, Phonon-frequency distributions and heat capacities of Aluminum and Lead, Phys. Rev., 162, 549, 10.1103/PhysRev.162.549 Brockhouse, 1967, Lattice vibrations in iron at 296°K, Solid State Commun., 5, 211, 10.1016/0038-1098(67)90258-X W.P. Poenitz and S.E. Aumeier, “The simultaneous evaluation of the standards and other cross sections of importance for technology,” Tech. Rep. ANL/NDM-139, Argonne National Lab, Argonne, IL, 1997 Hambsch, 2005, Status of the neutron cross section standards database, 826 Gwin, 1984, Measurements of the Energy Dependence of Prompt Neutron Emission from 233,235U and 239,241Pu for En=0.005 to 10 eV Relative to Emission from Spontaneous Fission of 252Cf, Nucl. Sci. Eng., 87, 381, 10.13182/NSE84-A18506 Arif, 1987, Precison Measurement of the Bound-Coherent-Neutron Scattering Length of 235U, Phys. Rev. A, 35, 2810, 10.1103/PhysRevA.35.2810 Boukharouba, 2002, Measurement of the n-p elastic scattering angular distribution at En = 10 MeV, Phys. Rev. C, 65, 014004, 10.1103/PhysRevC.65.014004 A.D. Carlson, G.M. Hale, and V. Pronyaev, “Summary report of the first research coordination meeting on improvement of the standard cross sections for light elements,” Tech. Rep. INDC(NDS)-438, International Atomic Energy Agency, Vienna, 2003 W.P. Poenitz, “Data interpretation, objective, evaluation procedures and mathematical technique for the evaluation of energy-dependent ratio, shape and cross section data,” in Proc. of the Conference on Nuclear Data Evaluation Methods and Procedures (B. Magurno and S. Pearlstein, eds.), pp. 249–289, Brookhaven National Lab, Upton, NY, BNL-NCS-51363, 1981 S. Chiba and D.L. Smith, “A suggested procedure for resolving an anomaly in least-squares data analysis known as Peelle's pertinent puzzle and the general implications for nuclear data evaluation,” Tech. Rep. ANL/NDM-121, Argonne National Lab, Argonne, Illinois, 1991 A.D. Carlson, W.P. Poenitz, G.M. Hale, R.W. Peelle, D.C. Dodder, and C.Y. Fu, “The ENDF/B-VI neutron cross section measurement standards,” Tech. Rep. ENDF-351, Brookhaven National Lab, National Nuclear Data Center, Upton, NY, 1993 Chen, 1995, Reduced R-matrix analysis for 17O system, Atomic Energy Science and Technology, 29, 366 Tagesen, 1994, Enhancements to the generalized least-squares cross-section evaluation code GLUCS, 589 T. Kawano, H. Matsunobu, T. Murata, A. Zukeran, Y. Nakajima, M. Kawai, O. Iwamoto, K. Shibata, T. Nakagawa, T. Ohsawa, M. Baba, and T. Yoshida, “Evaluation of Fission Cross Sections and Covariances for 233U, 235U, 238U, 239Pu, 240Pu, and 241Pu,” Tech. Rep. JAERI-Research-2000-004, Japan Atomic Energy Research Institute, Tokai, Japan, 2000 Badikov, 1992, Nuclear data processing, analysis, transformation and storage with Pade-approximants, 182 E.J. Axton, “Evaluation of the Thermal Constants of 233U, 235U, 239Pu and 241Pu, and the Fission Neutron Yield of 252Cf,” Tech. Rep. CBNM (IRMM) Report GE/PH/01/86, IRMM, Geel, 1986 Maslov, 2004, Uranium symmetric/asymmetric nucleon-induced fission up to 200 MeV, Eur. Phys. J. A, 21, 281, 10.1140/epja/i2003-10210-4 J. Hardy. Private Communication, Memo dated 18 June, 1985 Dietrich, 1988, Atlas of photonuetron cross sections obtained with monoenergetic photons, Atomic Data and Nuclear Data Tables, 38, 199, 10.1016/0092-640X(88)90033-2 E.G. Fuller and H. Gerstenberg, “Photonuclear data - abstract sheets 1955-1982,” Tech. Rep. Reports of the US National Bureau of Standards, NBSIR 83-2742, vol. I-XV (1983-1986), National Institute for Standards and Technology, Gaithersburg, MD, 1983-1986 A.V. Varlamov, V.V. Varlamov, D.S. Rudenko, and M.E. Stepanov, “Atlas of giant dipole resonance paramaters and graphs of photonuclear reaction cross sections,” Tech. Rep. INDC (NDS)-394 (1999), International Atomic Energy Agency, Vienna, Austria, 1999 Berman, 1987, Absolute photoneutron cross-sections for Zr, I, Pr, Au, and Pb, Phys. Rev., 36, 1286 Wolynec, 1984, Comment on photoneutron cross-sections, Phys. Rev. C, 29, 1137, 10.1103/PhysRevC.29.1137 P. Obložinský and M. Chadwick, “Photonuclear Data on 14N for Gamma Resonance Technology.” Unpublished BNL report, December 2002 Ajzenberg-Selove, 1991, Energy Levels of Light Nuclei A = 13-15, Nucl. Phys., A253, 1, 10.1016/0375-9474(91)90446-D Chadwick, 2003, Photonuclear physics in radiation transport: I. Cross sections and spectra photonuclear cross section evaluations to 150 MeV, Nucl. Sci. Eng., 144, 157, 10.13182/NSE144-157 Giacri, 2006, Photonuclear physics in radiation transport: III. Photofission cross sections, Nucl. Sci. Eng., 153, 33, 10.13182/NSE06-A2592 White, 2003, Photonuclear physics in radiation transport-II: Implementation, Nucl. Sci. Eng., 144, 174, 10.13182/NSE144-174 Caldwell, 1980, Giant resonance for the actinide nuclei: Photoneutron and photofission cross sections for 235U, 236U, 238U, and 232Th, Phys. Rev. C, 21, 1215, 10.1103/PhysRevC.21.1215 P. Young and M.B. Chadwick to be published, 2007 Barber, 1959, Neutron Yields from Targets Bombarded by Electrons, Phys. Rev., 116, 1551, 10.1103/PhysRev.116.1551 M. White, R. Little, M. Chadwick, P. Moller, W. Wilson, M. Nieto, M. Giacri, C. Moss, H. Trellue, G. McKinney, and D. Mashnik, “Photofission delayed neutron detection of HEU for nonproliferation,” Tech. Rep. LA-UR-03-7724, Los Alamos National Lab, NM, 2003 Hale, 1994, Cross sections and spectra for charged-particle induced reactions, 403 Lohr, 1974, Elastic Scattering of 9-13 MeV Vector Polarized Deuterons, Nucl. Phys. A, 232, 381, 10.1016/0375-9474(74)90627-7 McFadden, 1966, Optical model analyses of the scattering of 24.7 MeV alpha particles, Nucl. Phys., 84, 177, 10.1016/0029-5582(66)90441-X Becchetti, 1971, Polarization Phenomena in Nuclear Reactions, 682 D.G. Madland, “Recent results in the development of a global medium-energy nucleon-nucleus optical model potential,” in Proc. of a Specialists Meeting on Preequilibrium Reactions in Semmering, Austria (B. Strohmaier, ed.), no. NEANDC-245, pp. 103–116, OECD Nuclear Energy Agency, Paris, 1988 A.J. Koning, J.J. van Wijk, and J.-P. Delaroche, “ECISVIEW: An interactive toolbox for optical model development,” in Proc. of a Specialists Meeting on the Nucleon-Nucleus Optical Model up to 200 MeV, (Paris, France), pp. 111–120, Bruyeres-le-Chatel France, 13–15 November, OECD Nuclear Energy Agency, 1996 Ignatyuk, 1975, Phenomenological description of the energy dependence of the level density parameter, Sov. J. Nucl. Phys., 21, 255 Cook, 1967, Nuclear level densities for intermediate and heavy nuclei, Aus. J. Phys., 20, 477, 10.1071/PH670477 Kalbach, 1977, The Griffin Model, complex particles and direct nuclear reactions, Z. Physik, A283, 401, 10.1007/BF01409522 C. Kalbach, “PRECO-D2: Program for calculating preequilibrium and direct reaction double differential cross sections,” report LA-10248-MS, Los Alamos National Lab, 1985 H. Trellue and M. Chadwick, “Modifications to High-Energy Neutron and Proton Sublibraries (LA150),” Tech. Rep. LA-UR-06-3091, Los Alamos National Lab, 2005 Jarmie, 1984, Fusion-energy reaction 2H(t, α)n from Et = 12.5 to 117 keV, Phys. Rev. C, 29, 2031, 10.1103/PhysRevC.29.2031 Poppe, 1963, Neutrons from D + T and D + H, Phys. Rev., 129, 733, 10.1103/PhysRev.129.733 Drosg, 1981, Improved evaluation of the differential cross sections of the 3H(d,n)4He reaction for deuteron energies between 3 and 7 MeV, Zeitschrift für Physik A, Hadrons and Nuclei, 300, 315, 10.1007/BF01419862 Holm, 1956, t-t elastic scattering from 1.6 to 2.0 MeV, Phys. Rev., 101, 1772, 10.1103/PhysRev.101.1772 Wong, 1965, Neutron spectrum from the t+t reaction, Nucl. Phys., 71, 106, 10.1016/0029-5582(65)90040-4 Smith, 1963, He3 + t Reactions, Phys. Rev., 129, 785, 10.1103/PhysRev.129.785 Barshay, 1964, Geometric test of the isospin multiplet nature of nuclear analog states, Phys. Rev. Lett., 12, 728, 10.1103/PhysRevLett.12.728 Tuli Greenwood, 1997, Measurement of β- decay intensity distributions of several fission-product isotopes using a total absorption γ-ray spectrometer, Nucl. Instrum. Methods Phys. Res., A390, 95, 10.1016/S0168-9002(97)00356-2 N. Hagura, T. Yoshida, and T. Tachibana, “Reconsideration of the theoretical supplementation of decay data in fission-product decay heat summation calculations,” J. of Nucl. Science and Tech. (to be published), 2006 Yoshida Band, 2002, Dirac-Fock internal conversion coefficients, At. Data Nucl. Data Tables, 81, 1, 10.1006/adnd.2002.0884 P. Cassette, “SPEBETA programme de calcul du spectre en energie des electros emis par des radionucleides emetterus beta,” Tech. Rep. CEA Technical Note LPRI/92/307/J, CEA Saclay, 1992 A. Tobias and R. Mills. (private communication), 1989 T. England and B. Rider, “Evaluation and compilation of fission product yields,” Tech. Rep. ENDF-349, Los Alamos National Lab, 1992 D.E. Cullen, J.H. Hubbell, and L. Kissel, “EPDL97: The Evaluated Photon Data Library, '97 Version,” Tech. Rep. UCRL-50400, Vol.6, Rev.5, Lawrence Livermore National Lab, September 1997 S.T. Perkins, D.E. Cullen, and S.M. Seltzer, “Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1-100,” Tech. Rep. UCRL-50400, Vol.30, Lawrence Livermore National Lab, October 1991 S.T. Perkins, D.E. Cullen, and S.M. Seltzer, “Tables and Graphs of Electron Interaction Cross Sections from 10 eV to 100 GeV Data Derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1-100,” Tech. Rep. UCRL-50400, Vol.31, Lawrence Livermore National Lab, October 1991 D.E. Cullen, “ENDF/B-VI Coupled Photon-Electron Data for Use in Radiation Shielding Applications,” Tech. Rep. UCRL-JC-148180, Lawrence Livermore National Lab, 2002 T. Sutton et al., “The physical models and statistical procedures used in the RACER Monte Carlo code,” Tech. Rep. KAPL-4840 (DOE/TIC-4500-R75), Knolls Atomic Power Lab, 1999 Brown, 1986, Vectorization of 3-D General Geometry Monte Carlo, Trans. Am. Nucl. Soc., 53, 283 L. Ondis, L. Tyburski, and B. Moskowitz, “RCP01 - a Monte Carlo program for solving neutron and photon transport problems in three-dimensinal geometry with detailed energy desription and depletion capability,” Tech. Rep. B-TM-1638, Bechtel Bettis, 2000 R. Blomquist, “VIM continous energy Monte Carlo transport code,” in Proc. Inter. Conf. on Mathematics, Computations, Reactor Physics and Environmental Analysis, (Portland, OR), April 30 - May 4 1995 S.C. van der Marck, “Benchmarking ENDF/B-VII.0.” Nuclear Data Sheets, the present issue J. Both et al., “TRIPOLI-4 Monte Carlo method particle transport computer code,” Tech. Rep. CEA-R-6044, CEA Saclay, 2003 A. dos Dantos, R. Diniz, L. Fanaro, R. Jerez, G. de Andrade e Silva, and M. Yamaguchi, “The experimental determination of the effective delayed neutron parameters of the IPEN/MB-01 reactor,” (Chicago), PHYSOR-2004 Okajima, 2002, Summary on international benchmark experiments for effective delayed neutron fraction, Progress in Nuclear Energy, 41, 285301, 10.1016/S0149-1970(02)00015-X Klein Meulekamp, 2006, Reevaluation of the effective delayed neutron fraction measured by the substitution technique for a light water moderated low-enriched uranium core, Nucl. Sci. Eng., 152, 142 van der Marck, 2005, Benchmark results for delayed neutron data, 531 W. Webster et al., “Measurements of the neutron emission spectra from spheres of N, O, W, U-235, U-238, and Pu-239, pulsed by 14 MeV neutrons,” Tech. Rep. UCID-17332, 1976 C. Wong et al., “Livermore pulsed sphere program: Program summary through July 1971,” Tech. Rep. UCRL-51144, Rev I, and Addendum (1973), Lawrence Livermore National Lab, Livermore, 1972 A. Marchetti and G. Hedstrom, “New Monte Carlo simulations of the LLNL pulsed-sphere experiments,” Tech. Rep. UCRL-ID-131461, Lawrence Livermore National Lab, Livermore, 1998 S. Frankle, “LLNL pulsed-sphere measurements and detector response functions,” Tech. Rep. X-5:SCF-04-004 and LA-UR-05-5878, Los Alamos National Lab, Los Alamos, 2004 S. Frankle, “Possible impact of additional collimators on the LLNL pulsed-sphere experiments,” Tech. Rep. X-5:SCF-04-001 and LA-UR-05-5877, Los Alamos National Lab, Los Alamos, 2004 Bucholz, 2002, Improving the LLNL pulsed-sphere experiments database and MCNP models, Trans. Am. Nucl. Soc., 433