Existence of Solutions of the Boundary Value Problem for the Equations of Barotropic Flows of a Multicomponent Medium. I. Statement of the Main Problem. Solvability of an Auxiliary Problem
Tóm tắt
The problem of steady barotropic motion of a multicomponent medium consisting of
viscous compressible fluids in a bounded domain of three-dimensional space is formulated. The
viscosity matrices are assumed to be arbitrary (nondiagonal). The solvability of a regularized
(approximate) problem is proved.
Tài liệu tham khảo
K. L. Rajagopal and L. Tao, Mechanics of Mixtures (World Scientific, N. J., 1995).
R. I. Nigmatulin, Dynamics of Multiphase Media. Part 1 (Nauka, Moscow, 1987) [in Russian].
A. E. Mamontov and D. A. Prokudin, “Viscous compressible homogeneous multi-fluids with multiple velocities: Barotropic existence theory,” Sib. Electron. Math. Rep. 14, 388–397 (2017).
V. N. Dorovskii and Yu. V. Perepechko, “Phenomenological description of two-velocity media with relaxing tangential stresses,” Prikl. Mekh. Tekh. Fiz. (3), 97–104 (1992) [in Russian].
A. M. Blokhin and V. N. Dorovskii, Problems of Mathematical Modeling in the Theory of Multivelocity Continuum (OIGGM, Novosibirsk, 1994) [in Russian].
J. Frehse, S. Goj, and J. Malek, “On a Stokes-like system for mixtures of fluids,” SIAM J. Math. Anal. 36 (4), 1259–1281 (2005).
J. Frehse and W. Weigant, “On quasi-stationary models of mixtures of compressible fluids,” Appl. Math. 53 (4), 319–345 (2008).
A. E. Mamontov and D. A. Prokudin, “Solvability of a stationary boundary value problem for equations of polytropic motion of viscous compressible multifluid media,” Sib. Elektron. Mat. Izv. 13, 664–693 (2016) [in Russian].
V. G. Maz’ya, Sobolev Spaces (Izd. Leningrad. Univ., Leningrad, 1985) [in Russian].
S. M. Nikol’skii, Approximation of Functions of Several Variables and Embedding Theorems (Nauka, Moscow, 1977) [in Russian].
V. A. Trenogin, Functional Analysis (Fizmatlit, Moscow, 2002) [in Russian].
A. Novotný and I. StraŢkraba, Introduction to the Mathematical Theory of Compressible Flow (Oxford Univ. Press, Oxford, 2004).
P. Mucha and M. Pokorny, “Weak solutions to equations of steady compressible heat conducting fluids,” Math. Models Methods Appl. Sci. 20 (5), 785–813 (2010).
O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].
L. A. Solonnikov, “On general boundary value problems for systems of Douglis–Nirenberg elliptic equations. II,” Izv. Akad. Nauk SSSR. Ser. Mat. 42, 233–297 (1966) [in Russian].
S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,” Commun. Pure Appl. Math. 17, 35–92 (1964).