DNA methylation in the tumor microenvironment

Journal of Zhejiang University-SCIENCE B - Tập 18 - Trang 365-372 - 2017
Meng-wen Zhang1,2,3,4, Kenji Fujiwara3,4, Xu Che3,4, Shu Zheng1,2, Lei Zheng3,4
1The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
2The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, China
3Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
4The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA

Tóm tắt

The tumor microenvironment (TME) plays an important role in supporting cancer progression. The TME is composed of tumor cells, the surrounding tumor-associated stromal cells, and the extracellular matrix (ECM). Crosstalk between the TME components contributes to tumorigenesis. Recently, one of our studies showed that pancreatic ductal adenocarcinoma (PDAC) cells can induce DNA methylation in cancer-associated fibroblasts (CAFs), thereby modifying tumor-stromal interactions in the TME, and subsequently creating a TME that supports tumor growth. Here we summarize recent studies about how DNA methylation affects tumorigenesis through regulating tumorassociated stromal components including fibroblasts and immune cells. We also discuss the potential for targeting DNA methylation for the treatment of cancers.

Tài liệu tham khảo

Ahmed, S.F., Farquharson, C., 2010. The effect of GHand IGF1 on linear growth and skeletal development and their modulation by SOCS proteins. J. Endocrinol., 206(3): 249–259. http://dx.doi.org/10.1677/JOE-10-0045 Albrengues, J., Bertero, T., Grasset, E., et al., 2015. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun., 6:10204. http://dx.doi.org/10.1038/ncomms10204 Amodio, N., Bellizzi, D., Leotta, M., et al., 2013. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle, 12(23):3650–3662. http://dx.doi.org/10.4161/cc.26585 Batarseh, K.I., 2013. Antineoplastic activities, apoptotic mechanism of action and structural properties of a novel silver(I) chelate. Curr. Med. Chem., 20(18):2363–2373. http://dx.doi.org/10.2174/0929867311320180007 Berraondo, P., Minute, L., Ajona, D., et al., 2016. Innate immune mediators in cancer: between defense and resistance. Immunol. Rev., 274(1):290–306. http://dx.doi.org/10.1111/imr.12464 Bian, E.B., Huang, C., Ma, T.T., et al., 2012. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol. Appl. Pharmacol., 264(1):13–22. http://dx.doi.org/10.1016/j.taap.2012.06.022 Bird, A., 2007. Perceptions of epigenetics. Nature, 447(7143): 396–398. http://dx.doi.org/10.1038/nature05913 Bock, C., Beerman, I., Lien, W.H., et al., 2012. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol. Cell, 47(4):633–647. http://dx.doi.org/10.1016/j.molcel.2012.06.019 Broske, A.M., Vockentanz, L., Kharazi, S., et al., 2009. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet., 41(11): 1207–1215. http://dx.doi.org/10.1038/ng.463 Cheung, P., Allis, C.D., Sassone-Corsi, P., 2000. Signaling to chromatin through histone modifications. Cell, 103(2): 263–271. http://dx.doi.org/10.1016/S0092-8674(00)00118-5 Chiappinelli, K.B., Zahnow, C.A., Ahuja, N., et al., 2016. Combining epigenetic and immunotherapy to combat cancer. Cancer Res., 76(7):1683–1689. http://dx.doi.org/10.1158/0008-5472.CAN-15-2125 Cui, H., Onyango, P., Brandenburg, S., et al., 2002. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res., 62(22):6442–6446. Dedeurwaerder, S., Desmedt, C., Calonne, E., et al., 2011. DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol. Med., 3(12):726–741. http://dx.doi.org/10.1002/emmm.201100801 de Wever, O., Demetter, P., Mareel, M., et al., 2008. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer, 123(10):2229–2238. http://dx.doi.org/10.1002/ijc.23925 Easwaran, H., Tsai, H.C., Baylin, S.B., 2014. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell, 54(5):716–727. http://dx.doi.org/10.1016/j.molcel.2014.05.015 El Taghdouini, A., Sorensen, A.L., Reiner, A.H., et al., 2015. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget, 6(29):26729–26745. http://dx.doi.org/10.18632/oncotarget.4925 Esteller, M., 2007. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet., 8(4): 286–298. http://dx.doi.org/10.1038/nrg2005 Feig, C., Gopinathan, A., Neesse, A., et al., 2012. The pancreas cancer microenvironment. Clin. Cancer Res., 18(16): 4266–4276. http://dx.doi.org/10.1158/1078-0432.CCR-11-3114 Garzon, R., Calin, G.A., Croce, C.M., 2009. MicroRNAs in Cancer. Annu. Rev. Med., 60(1):167–179. http://dx.doi.org/10.1146/annurev.med.59.053006.104707 Gascard, P., Tlsty, T.D., 2016. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev., 30(9):1002–1019. http://dx.doi.org/10.1101/gad.279737.116 Gibb, E.A., Brown, C.J., Lam, W.L., 2011. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer, 10(1):38. http://dx.doi.org/10.1186/1476-4598-10-38 Gotze, S., Schumacher, E.C., Kordes, C., et al., 2015. Epigenetic changes during hepatic stellate cell activation. PLoS ONE, 10(6):e0128745. http://dx.doi.org/10.1371/journal.pone.0128745 Gronbaek, K., Hother, C., Jones, P.A., 2007. Epigenetic changes in cancer. APMIS, 115(10):1039–1059. http://dx.doi.org/10.1111/j.1600-0463.2007.apm_636.xml.x Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell, 144(5):646–674. http://dx.doi.org/10.1016/j.cell.2011.02.013 Hinz, B., Phan, S.H., Thannickal, V.J., et al., 2007. The myofibroblast: one function, multiple origins. Am. J. Pathol., 170(6):1807–1816. http://dx.doi.org/10.2353/ajpath.2007.070112 Iba, K., Albrechtsen, R., Gilpin, B.J., et al., 1999. Cysteinerich domain of human ADAM 12 (meltrin a) supports tumor cell adhesion. Am. J. Pathol., 154(5):1489–1501. http://dx.doi.org/10.1016/S0002-9440(10)65403-X Iorio, M.V., Piovan, C., Croce, C.M., 2010. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim. Biophys. Acta, 1799(10–12):694–701. http://dx.doi.org/10.1016/j.bbagrm.2010.05.005 Ishii, G., Ochiai, A., Neri, S., 2016. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv. Drug Deliv. Rev., 99(Pt B): 186–196. http://dx.doi.org/10.1016/j.addr.2015.07.007 Janson, P.C., Marits, P., Thorn, M., et al., 2008. CpG methylation of the IFNG gene as a mechanism to induce immunosuppression in tumor-infiltrating lymphocytes. J. Immunol., 181(4):2878–2886. http://dx.doi.org/10.4049/jimmunol.181.4.2878 Jiang, L., Gonda, T.A., Gamble, M.V., et al., 2008. Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res., 68(23):9900–9908. http://dx.doi.org/10.1158/0008-5472.CAN-08-1319 Karagiannis, G.S., Poutahidis, T., Erdman, S.E., et al., 2012. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res., 10(11):1403–1418. http://dx.doi.org/10.1158/1541-7786.MCR-12-0307 Ke, X., Zhang, S., Xu, J., et al., 2016. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation. Cancer Immunol. Immunother., 65(5):587–599. http://dx.doi.org/10.1007/s00262-016-1825-6 Kouzarides, T., 2007. Chromatin modifications and their function. Cell, 128(4):693–705. http://dx.doi.org/10.1016/j.cell.2007.02.005 Ling, H., Spizzo, R., Atlasi, Y., et al., 2013. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res., 23(9):1446–1461. http://dx.doi.org/10.1101/gr.152942.112 Liu, H.X., Li, X.L., Dong, C.F., 2015. Epigenetic and metabolic regulation of breast cancer stem cells. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(1):10–17. http://dx.doi.org/10.1631/jzus.B1400172 Luperchio, T.R., Wong, X., Reddy, K.L., 2014. Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr. Opin. Genet. Dev., 25: 50–61. http://dx.doi.org/10.1016/j.gde.2013.11.021 Mann, J., Chu, D.C., Maxwell, A., et al., 2010. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology, 138(2): 705–714. http://dx.doi.org/10.1053/j.gastro.2009.10.002 Mueller, M.M., Fusenig, N.E., 2004. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer, 4(11):839–849. http://dx.doi.org/10.1038/nrc1477 Neesse, A., Algul, H., Tuveson, D.A., et al., 2015. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut, 64(9):1476–1484. http://dx.doi.org/10.1136/gutjnl-2015-309304 Page, A., Paoli, P., Moran, S.E., et al., 2016. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J. Hepatol., 64(3): 661–673. http://dx.doi.org/10.1016/j.jhep.2015.11.024 Peric-Hupkes, D., Meuleman, W., Pagie, L., et al., 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell, 38(4):603–613. http://dx.doi.org/10.1016/j.molcel.2010.03.016 Pinzani, M., Rombouts, K., Colagrande, S., 2005. Fibrosis in chronic liver diseases: diagnosis and management. J. Hepatol., 42(Suppl. 1):S22–S36. http://dx.doi.org/10.1016/j.jhep.2004.12.008 Pleyer, L., Greil, R., 2015. Digging deep into “dirty” drugs— modulation of the methylation machinery. Drug Metab. Rev., 47(2):252–279. http://dx.doi.org/10.3109/03602532.2014.995379 Rabinovich, E.I., Kapetanaki, M.G., Steinfeld, I., et al., 2012. Global methylation patterns in idiopathic pulmonary fibrosis. PLoS ONE, 7(4):e33770. http://dx.doi.org/10.1371/journal.pone.0033770 Rucki, A.A., Zheng, L., 2014. Pancreatic cancer stroma: understanding biology leads to new therapeutic strategies. World J. Gastroenterol., 20(9):2237–2246. http://dx.doi.org/10.3748/wjg.v20.i9.2237 Schuyler, R.P., Merkel, A., Raineri, E., et al., 2016. Distinct trends of DNA methylation patterning in the innate and adaptive immune systems. Cell Rep., 17(8):2101–2111. http://dx.doi.org/10.1016/j.celrep.2016.10.054 Sharma, S., Kelly, T.K., Jones, P.A., 2010. Epigenetics in cancer. Carcinogenesis, 31(1):27–36. http://dx.doi.org/10.1093/carcin/bgp220 Sido, J.M., Yang, X., Nagarkatti, P.S., et al., 2015. ?9-Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J. Leukoc. Biol., 97(4):677–688. http://dx.doi.org/10.1189/jlb.1A1014-479R Smith, Z.D., Meissner, A., 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet., 14:204–220. http://dx.doi.org/10.1038/nrg3354 Sorensen, A.L., Timoskainen, S., West, F.D., et al., 2010. Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types. Stem Cells Dev., 19(8):1257–1266. http://dx.doi.org/10.1089/scd.2009.0309 Sukari, A., Nagasaka, M., Al-Hadidi, A., et al., 2016. Cancer immunology and immunotherapy. Anticancer Res., 36(11): 5593–5606. http://dx.doi.org/10.21873/anticanres.11144 Tampe, B., Tampe, D., Muller, C.A., et al., 2014. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J. Am. Soc. Nephrol., 25(5): 905–912. http://dx.doi.org/10.1681/ASN.2013070723 Trikha, P., Carson, W.R., 2014. Signaling pathways involved in MDSC regulation. Biochim. Biophys. Acta, 1846(1): 55–65. http://dx.doi.org/10.1016/j.bbcan.2014.04.003 Trimboli, A.J., Cantemir-Stone, C.Z., Li, F., et al., 2009. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 461(7267):1084–1091. http://dx.doi.org/10.1038/nature08486 van Kampen, J.G.M., Marijnissen-van Zanten, M.A.J., Simmer, F., et al., 2014. Epigenetic targeting in pancreatic cancer. Cancer Treat. Rev., 40(5):656–664. http://dx.doi.org/10.1016/j.ctrv.2013.12.002 Vincent, A., Omura, N., Hong, S.M., et al., 2011. Genomewide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin. Cancer Res., 17(13):4341–4354. http://dx.doi.org/10.1158/1078-0432.CCR-10-3431 Vizoso, M., Puig, M., Carmona, F.J., et al., 2015. Aberrant DNA methylation in non-small cell lung cancerassociated fibroblasts. Carcinogenesis, 36(12):1453–1463. http://dx.doi.org/10.1093/carcin/bgv146 Wang, Z., Gao, Z., Shi, Y., et al., 2007. Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts. J. Plast. Reconstr. Aesthet. Surg., 60(11): 1193–1199. http://dx.doi.org/10.1016/j.bjps.2006.05.007 Wieczorek, G., Asemissen, A., Model, F., et al., 2009. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res., 69(2):599–608. http://dx.doi.org/10.1158/0008-5472.CAN-08-2361 Xiang, J.F., Yin, Q.F., Chen, T., et al., 2014. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res., 24(5): 513–531. http://dx.doi.org/10.1038/cr.2014.35 Xiao, Q., Zhou, D., Rucki, A.A., et al., 2016. Cancerassociated fibroblasts in pancreatic cancer are reprogrammed by tumor-induced alterations in genomic DNA methylation. Cancer Res., 76(18):5395–5404. http://dx.doi.org/10.1158/0008-5472.CAN-15-3264 Xing, Y., Zhao, S., Zhou, B.P., et al., 2015. Metabolic reprogramming of the tumour microenvironment. Febs. J., 282(20):3892–3898. http://dx.doi.org/10.1111/febs.13402 Yu, J., Walter, K., Omura, N., et al., 2012. Unlike pancreatic cancer cells pancreatic cancer associated fibroblasts display minimal gene induction after 5-Aza-2'-deoxycytidine. PLoS ONE, 7(9):e43456. http://dx.doi.org/10.1371/journal.pone.0043456 Zhi, K., Shen, X., Zhang, H., et al., 2010. Cancer-associated fibroblasts are positively correlated with metastatic potential of human gastric cancers. J. Exp. Clin. Cancer Res., 29(1):66. http://dx.doi.org/10.1186/1756-9966-29-66