Range-kernel characterizations of operators which are adjoint of each other

Advances in Operator Theory - Tập 5 - Trang 1026-1038 - 2020
Zsigmond Tarcsay1, Zoltán Sebestyén1
1Department of Applied Analysis and Computational Mathematics, Eötvös L. University, Budapest, Hungary

Tóm tắt

We provide necessary and sufficient conditions for a pair S, T of Hilbert space operators in order that they satisfy $$S^*=T$$ and $$T^*=S$$ . As a main result we establish an improvement of von Neumann’s classical theorem on the positive self-adjointness of $$S^*S$$ for two variables. We also give some new characterizations of self-adjointness and skew-adjointness of operators, not requiring their symmetry or skew-symmetry, respectively.

Tài liệu tham khảo

Arens, R.: Operational calculus of linear relations. Pac. J. Math. 11, 9–23 (1961) Behrndt, J., Hassi, S., de Snoo, H.S.V.: Boundary Value Problems, Weyl Functions, and Differential Operators Monographs in Mathematics, vol. 108. Birkhäuser, Cham (2020) Gesztesy, F., Schmüdgen, K.: On a theorem of Z. Sebestyén and Zs. Tarcsay. Acta Sci. Math. (Szeged) 85, 291–293 (2019) Hassi, S., de Snoo, H.S.V., Szafraniec, F.H.: Componentwise and canonical decompositions of linear relations. Diss. Math. 465, 59 (2009) Neumann, J.: Allgemeine Eigenwerttheorie hermitescher Funktionaloperatoren. Math. Ann. 102, 49–131 (1930) Neumann, J.: Über adjungierte Funktionaloperatoren. Ann. Math. 33, 294–310 (1932) Nieminen, T.: A condition for the self-adjointness of a linear operator. Ann. Acad. Sci. Fenn. Ser., A I No 316 Popovici, D., Sebestyén, Z.: On operators which are adjoint to each other. Acta Sci. Math. (Szeged) 80, 175–194 (2014) Roman, M., Sandovici, A.: A note on a paper by Nieminen. Results Math. 74(2), Art. 73 (2019) Schmüdgen, K.: Unbounded Self-adjoint Operators on Hilbert Space, vol. 265. Springer Science and Business Media, New York (2012) Sebestyén, Z., Tarcsay, Z.: Characterizations of selfadjoint operators. Stud. Sci. Math. Hung. 50, 423–435 (2013) Sebestyén, Z., Tarcsay, Z.: A reversed von Neumann theorem. Acta Sci. Math. (Szeged) 80, 659–664 (2014) Sebestyén, Z., Tarcsay, Z.: Characterizations of essentially selfadjoint and skew-adjoint operators. Stud. Sci. Math. Hung. 52, 371–385 (2015) Sebestyén, Z., Tarcsay, Z.: Adjoint of sums and products of operators in Hilbert spaces. Acta Sci. Math. (Szeged) 82, 175–191 (2016) Sebestyén, Z., Tarcsay, Z.: On the square root of a positive selfadjoint operator. Period. Math. Hung. 75, 268–272 (2017) Sebestyén, Z., Tarcsay, Z.: On the adjoint of Hilbert space operators. Linear Multilinear Algebra 67, 625–645 (2019) Stone, M.H.: Linear Transformations in Hilbert Spaces and their Applications to Analysis, Amer. Math. Soc. Colloq. Publ., vol. 15. American Mathematical Society, Providence (1932)