Sparse Generalised Principal Component Analysis

Pattern Recognition - Tập 83 - Trang 443-455 - 2018
Luke Smallman1, Andreas Artemiou1, Jennifer Morgan1
1School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AG, United Kingdom

Tài liệu tham khảo

Blei, 2003, Latent Dirichlet allocation, J. Mach. Learn. Res., 3, 993 Collins, 2002, A generalization of principal components analysis to the exponential family, Adv. Neural Inf. Process. Syst., 14, 617 de Leeuw, 2006, Principal component analysis of binary data by iterated singular value decomposition, Comput. Stat. Data Anal., 50, 21, 10.1016/j.csda.2004.07.010 Diederichs, 2013, Sparse non Gaussian component analysis by semidefinite programming, Mach. Learn., 91, 211, 10.1007/s10994-013-5331-1 Ding, 2004, K-means clustering via principal component analysis, 29 Fan, 2001, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Stat. Assoc., 96, 1348, 10.1198/016214501753382273 Gillis, 2014, The why and how of nonnegative matrix factorization, ArXiv e-prints Guan, 2009, Sparse probabilistic principal component analysis, 185 Hoerl, 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55, 10.1080/00401706.1970.10488634 Hotelling, 1933, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 417, 10.1037/h0071325 Hu, 2016, Sparse principal component analysis via rotation and truncation, IEEE Trans. Neural Netw. Learn. Syst., 27, 875, 10.1109/TNNLS.2015.2427451 Hunter, 2005, Variable selection using MM algorithms, Ann. Stat., 33, 1617, 10.1214/009053605000000200 Kwak, 2008, Principal component analysis based on l1-norm maximization, IEEE Trans. Pattern Anal. Mach. Intell., 30, 1672, 10.1109/TPAMI.2008.114 Landgraf, 2015, Generalized Principal Component Analysis : Projection of Saturated Model Parameters Lu, 2016, Sparse exponential family principal component analysis, Pattern Recognit., 60, 681, 10.1016/j.patcog.2016.05.024 Nocedal, 2006 Pearson, 1901, On lines and planes of closest fit to systems of points in space, Lond. Edinburgh Dublin Philos. Mag. J. Sci., 2, 559, 10.1080/14786440109462720 R Foundation for Statistical Computing, Vienna, 2011. R Development Core Team. R: A Language and Environment for Statistical Computing 55, 275–286. Schönemann, 1966, A generalized solution of the orthogonal procrustes problem, Psychometrika, 31, 1, 10.1007/BF02289451 Taddy, 2013, Multinomial inverse regression for text analysis, J. Am. Stat. Assoc., 108, 755, 10.1080/01621459.2012.734168 Taddy, 2015, Distributed multinomial regression, Ann. Appl. Stat., 9, 1394, 10.1214/15-AOAS831 Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B (Methodol.), 58, 267 Tipping, 1999, Probabilistic principal component analysis, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 61, 611, 10.1111/1467-9868.00196 Wen, 2013, A feasible method for optimization with orthogonality constraints, Math. Program., 142, 397, 10.1007/s10107-012-0584-1 Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B (Methodol.), 67, 301, 10.1111/j.1467-9868.2005.00503.x Zou, 2006, Sparse principal component analysis, J. Comput. Graph. Stat., 15, 265, 10.1198/106186006X113430