Sparse Generalised Principal Component Analysis
Tài liệu tham khảo
Blei, 2003, Latent Dirichlet allocation, J. Mach. Learn. Res., 3, 993
Collins, 2002, A generalization of principal components analysis to the exponential family, Adv. Neural Inf. Process. Syst., 14, 617
de Leeuw, 2006, Principal component analysis of binary data by iterated singular value decomposition, Comput. Stat. Data Anal., 50, 21, 10.1016/j.csda.2004.07.010
Diederichs, 2013, Sparse non Gaussian component analysis by semidefinite programming, Mach. Learn., 91, 211, 10.1007/s10994-013-5331-1
Ding, 2004, K-means clustering via principal component analysis, 29
Fan, 2001, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Stat. Assoc., 96, 1348, 10.1198/016214501753382273
Gillis, 2014, The why and how of nonnegative matrix factorization, ArXiv e-prints
Guan, 2009, Sparse probabilistic principal component analysis, 185
Hoerl, 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55, 10.1080/00401706.1970.10488634
Hotelling, 1933, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 417, 10.1037/h0071325
Hu, 2016, Sparse principal component analysis via rotation and truncation, IEEE Trans. Neural Netw. Learn. Syst., 27, 875, 10.1109/TNNLS.2015.2427451
Hunter, 2005, Variable selection using MM algorithms, Ann. Stat., 33, 1617, 10.1214/009053605000000200
Kwak, 2008, Principal component analysis based on l1-norm maximization, IEEE Trans. Pattern Anal. Mach. Intell., 30, 1672, 10.1109/TPAMI.2008.114
Landgraf, 2015, Generalized Principal Component Analysis : Projection of Saturated Model Parameters
Lu, 2016, Sparse exponential family principal component analysis, Pattern Recognit., 60, 681, 10.1016/j.patcog.2016.05.024
Nocedal, 2006
Pearson, 1901, On lines and planes of closest fit to systems of points in space, Lond. Edinburgh Dublin Philos. Mag. J. Sci., 2, 559, 10.1080/14786440109462720
R Foundation for Statistical Computing, Vienna, 2011. R Development Core Team. R: A Language and Environment for Statistical Computing 55, 275–286.
Schönemann, 1966, A generalized solution of the orthogonal procrustes problem, Psychometrika, 31, 1, 10.1007/BF02289451
Taddy, 2013, Multinomial inverse regression for text analysis, J. Am. Stat. Assoc., 108, 755, 10.1080/01621459.2012.734168
Taddy, 2015, Distributed multinomial regression, Ann. Appl. Stat., 9, 1394, 10.1214/15-AOAS831
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B (Methodol.), 58, 267
Tipping, 1999, Probabilistic principal component analysis, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 61, 611, 10.1111/1467-9868.00196
Wen, 2013, A feasible method for optimization with orthogonality constraints, Math. Program., 142, 397, 10.1007/s10107-012-0584-1
Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B (Methodol.), 67, 301, 10.1111/j.1467-9868.2005.00503.x
Zou, 2006, Sparse principal component analysis, J. Comput. Graph. Stat., 15, 265, 10.1198/106186006X113430