NOX enzymes: potential target for the treatment of acute lung injury

Stéphanie Carnesecchi1, Jean-Claude Pache2, Constance Barazzone-Argiroffo1
1Department of Pediatrics/Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
2Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland

Tóm tắt

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), is characterized by acute inflammation, disruption of the alveolar-capillary barrier, and in the organizing stage by alveolar pneumocytes hyperplasia and extensive lung fibrosis. The cellular and molecular mechanisms leading to the development of ALI/ARDS are not completely understood, but there is evidence that reactive oxygen species (ROS) generated by inflammatory cells as well as epithelial and endothelial cells are responsible for inflammatory response, lung damage, and abnormal repair. Among all ROS-producing enzymes, the members of NADPH oxidases (NOXs), which are widely expressed in different lung cell types, have been shown to participate in cellular processes involved in the maintenance of lung integrity. It is not surprising that change in NOXs’ expression and function is involved in the development of ALI/ARDS. In this context, the use of NOX inhibitors could be a possible therapeutic perspective in the management of this syndrome. In this article, we summarize the current knowledge concerning some cellular aspects of NOXs localization and function in the lungs, consider their contribution in the development of ALI/ARDS and discuss the place of NOX inhibitors as potential therapeutical target.

Từ khóa


Tài liệu tham khảo

Tasaka S, Amaya F, Hashimoto S, Ishizaka A (2008) Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxid Redox Signal 10:739–753

Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

Chabot F, Mitchell JA, Gutteridge JM, Evans TW (1998) Reactive oxygen species in acute lung injury. Eur Respir J 11:745–757

Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V, Thannickal VJ (2009) NOX enzymes and pulmonary disease. Antioxid Redox Signal 11:2505–2516

van der Vliet A (2008) NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med 44:938–955

Carnesecchi S, Deffert C, Donati Y et al (2011) A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid Redox Signal 15(3):607–619

Hecker L, Vittal R, Jones T et al (2009) NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15:1077–1081

Sorescu D, Weiss D, Lassegue B et al (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105:1429–1435

Zhang X, Shan P, Jiang G, Cohn L, Lee PJ (2006) Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest 116:3050–3059

Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187

Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140

Kikuchi H, Hikage M, Miyashita H, Fukumoto M (2000) NADPH oxidase subunit, gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 254:237–243

Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. Faseb J 17:1502–1504

Edens WA, Sharling L, Cheng G et al (2001) Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox. J Cell Biol 154:879–891

Carnesecchi S, Deffert C, Pagano A et al (2009) NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. Am J Respir Crit Care Med 180:972–981

Mittal M, Roth M, Konig P et al (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258–267

Harper RW, Xu C, Eiserich JP et al (2005) Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett 579:4911–4917

Nagai K, Betsuyaku T, Suzuki M et al (2008) Dual oxidase 1 and 2 expression in airway epithelium of smokers and patients with mild/moderate chronic obstructive pulmonary disease. Antioxid Redox Signal 10:705–714

Garrido-Urbani S, Jemelin S, Deffert C et al (2011) Correction: targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha mediated mechanism. PLoS One 6(2):e14665

Pantano C, Anathy V, Ranjan P, Heintz NH, Janssen-Heininger YM (2007) Nonphagocytic oxidase 1 causes death in lung epithelial cells via a TNF-RI-JNK signaling axis. Am J Respir Cell Mol Biol 36:473–479

Goyal P, Weissmann N, Grimminger F et al (2004) Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radic Biol Med 36:1279–1288

Malec V, Gottschald OR, Li S, Rose F, Seeger W, Hanze J (2010) HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radic Biol Med 48:1626–1635

Puca R, Nardinocchi L, Starace G et al (2010) Nox1 is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Radic Biol Med 48:1338–1346

Ranjan P, Anathy V, Burch PM, Weirather K, Lambeth JD, Heintz NH (2006) Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid Redox Signal 8:1447–1459

Clempus RE, Sorescu D, Dikalova AE et al (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27:42–48

Pendyala S, Gorshkova IA, Usatyuk PV et al (2009) Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid Redox Signal 11:747–764

Chowdhury AK, Watkins T, Parinandi NL et al (2005) Src-mediated tyrosine phosphorylation of p47phox in hyperoxia-induced activation of NADPH oxidase and generation of reactive oxygen species in lung endothelial cells. J Biol Chem 280:20700–20711

Fu XW, Wang D, Nurse CA, Dinauer MC, Cutz E (2000) NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci USA 97:4374–4379

Al-Mehdi AB, Zhao G, Dodia C et al (1998) Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 83:730–737

Liu JQ, Erbynn EM, Folz RJ (2005) Chronic hypoxia-enhanced murine pulmonary vasoconstriction: role of superoxide and gp91phox. Chest 128:594S–596S

Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ (2006) Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 290:L2–L10

Fan J, Frey RS, Malik AB (2003) TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase. J Clin Invest 112:1234–1243

Cutz E, Pan J, Yeger H (2009) The role of NOX2 and “novel oxidases” in airway chemoreceptor O(2) sensing. Adv Exp Med Biol 648:427–438

Fan J, Frey RS, Rahman A, Malik AB (2002) Role of neutrophil NADPH oxidase in the mechanism of tumor necrosis factor-alpha induced NF-kappa B activation and intercellular adhesion molecule-1 expression in endothelial cells. J Biol Chem 277:3404–3411

Kong X, Thimmulappa R, Kombairaju P, Biswal S (2010) NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol 185:569–577

Zhang WJ, Wei H, Tien YT, Frei B (2011) Genetic ablation of phagocytic NADPH oxidase in mice limits TNFalpha-induced inflammation in the lungs but not other tissues. Free Radic Biol Med 50:1517–1525

Vlahos R, Stambas J, Bozinovski S, Broughton BR, Drummond GR, Selemidis S (2011) Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog 7:e1001271

Soucy-Faulkner A, Mukawera E, Fink K et al (2010) Requirement of NOX2 and reactive oxygen species for efficient RIG-I-mediated antiviral response through regulation of MAVS expression. PLoS Pathog 6:e1000930

Farley KS, Wang L, Mehta S (2009) Septic pulmonary microvascular endothelial cell injury: role of alveolar macrophage NADPH oxidase. Am J Physiol Lung Cell Mol Physiol 296:L480–L488

Kampfrath T, Maiseyeu A, Ying Z et al (2011) Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circ Res 108:716–726

Lane CR, Lee PJ (2010) NOX3 regulates the inflammatory response and endothelial barrier integrity in hyperoxic acute lung injury. Am J respir Crit Care Med 181:A2719

Pendyala S, Moitra J, Kalari S et al (2011) Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: identification of functional antioxidant response elements on the Nox4 promoter. Free Radic Biol Med 50:1749–1759

Amara N, Bachoual R, Desmard M et al (2007) Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 293:L170–L181

Pache JC, Carnesecchi S, Deffert C et al (2011) NOX-4 is expressed in thickened pulmonary arteries in idiopathic pulmonary fibrosis. Nat Med 17:31–32 author reply 2–3

Sturrock A, Cahill B, Norman K et al (2006) Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 290:L661–L673

Park S, Ahn JY, Lim MJ et al (2010) Sustained expression of NADPH oxidase 4 by p38 MAPK-Akt signaling potentiates radiation-induced differentiation of lung fibroblasts. J Mol Med 88:807–816

Dhaunsi GS, Paintlia MK, Kaur J, Turner RB (2004) NADPH oxidase in human lung fibroblasts. J Biomed Sci 11:617–622

Li S, Tabar SS, Malec V et al (2008) NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxid Redox Signal 10:1687–1698

Rada B, Leto TL (2010) Characterization of hydrogen peroxide production by Duox in bronchial epithelial cells exposed to Pseudomonas aeruginosa. FEBS Lett 584:917–922

Boots AW, Hristova M, Kasahara DI, Haenen GR, Bast A, van der Vliet A (2009) ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. J Biol Chem 284:17858–17867

Lavigne MC, Eppihimer MJ (2005) Cigarette smoke condensate induces MMP-12 gene expression in airway-like epithelia. Biochem Biophys Res Commun 330:194–203

Nakanaga T, Nadel JA, Ueki IF, Koff JL, Shao MX (2007) Regulation of interleukin-8 via an airway epithelial signaling cascade. Am J Physiol Lung Cell Mol Physiol 292:L1289–L1296

Shao MX, Nadel JA (2005) Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci USA 102:767–772

Wesley UV, Bove PF, Hristova M, McCarthy S, van der Vliet A (2007) Airway epithelial cell migration and wound repair by ATP-mediated activation of dual oxidase 1. J Biol Chem 282:3213–3220

Schwarzer C, Machen TE, Illek B, Fischer H (2004) NADPH oxidase-dependent acid production in airway epithelial cells. J Biol Chem 279:36454–36461

Koff JL, Shao MX, Kim S, Ueki IF, Nadel JA (2006) Pseudomonas lipopolysaccharide accelerates wound repair via activation of a novel epithelial cell signaling cascade. J Immunol 177:8693–8700

Fischer H, Gonzales LK, Kolla V et al (2007) Developmental regulation of DUOX1 expression and function in human fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 292:L1506–L1514

Forteza R, Salathe M, Miot F, Conner GE (2005) Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am J Respir Cell Mol Biol 32:462–469

Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

Bachofen M, Weibel ER (1977) Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis 116:589–615

Pache JC, Christakos PG, Gannon DE, Mitchell JJ, Low RB, Leslie KO (1998) Myofibroblasts in diffuse alveolar damage of the lung. Mod Pathol 11:1064–1070

Bachofen M, Weibel ER (1982) Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med 3:35–56

Prescott SM, McIntyre TM, Zimmerman G (1999) Two of the usual suspects, platelet-activating factor and its receptor, implicated in acute lung injury. J Clin Invest 104:1019–1020

Matthay MA, Geiser T, Matalon S, Ischiropoulos H (1999) Oxidant-mediated lung injury in the acute respiratory distress syndrome. Crit Care Med 27:2028–2030

Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:L379–L399

Salvemini D, Cuzzocrea S (2002) Oxidative stress in septic shock and disseminated intravascular coagulation. Free Radic Biol Med 33:1173–1185

Victor VM, Rocha M, De la Fuente M (2003) Regulation of macrophage function by the antioxidant N-acetylcysteine in mouse-oxidative stress by endotoxin. Int Immunopharmacol 3:97–106

Ben-Shaul V, Lomnitski L, Nyska A, Zurovsky Y, Bergman M, Grossman S (2001) The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol Lett 123:1–10

Koay MA, Christman JW, Segal BH et al (2001) Impaired pulmonary NF-kappaB activation in response to lipopolysaccharide in NADPH oxidase-deficient mice. Infect Immun 69:5991–5996

Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:S4–S8

Gao XP, Standiford TJ, Rahman A et al (2002) Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox-/- and gp91phox-/- mice. J Immunol 168:3974–3982

Sadikot RT, Zeng H, Yull FE et al (2004) p47phox deficiency impairs NF-kappa B activation and host defense in Pseudomonas pneumonia. J Immunol 172:1801–1808

Sato K, Kadiiska MB, Ghio AJ et al (2002) In vivo lipid-derived free radical formation by NADPH oxidase in acute lung injury induced by lipopolysaccharide: a model for ARDS. FASEB J 16:1713–1720

Swain SD, Wright TW, Degel PM, Gigliotti F, Harmsen AG (2004) Neither neutrophils nor reactive oxygen species contribute to tissue damage during Pneumocystis pneumonia in mice. Infect Immun 72:5722–5732

Zhang WJ, Wei H, Frei B (2009) Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radic Biol Med 46:791–798

Yang CS, Shin DM, Kim KH et al (2009) NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J Immunol 182:3696–3705

Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9

Liu SF, Malik AB (2006) NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290:L622–L645

Pacquelet S, Johnson JL, Ellis BA et al (2007) Cross-talk between IRAK-4 and the NADPH oxidase. Biochem J 403:451–461

Fan J, Cai H, Tan WS (2007) Role of the plasma membrane ROS-generating NADPH oxidase in CD34+ progenitor cells preservation by hypoxia. J Biotechnol 130:455–462

Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS (2004) Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 173:3589–3593

Park HS, Chun JN, Jung HY, Choi C, Bae YS (2006) Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 72:447–455

Chiang E, Dang O, Anderson K, Matsuzawa A, Ichijo H, David M (2006) Cutting edge: apoptosis-regulating signal kinase 1 is required for reactive oxygen species-mediated activation of IFN regulatory factor 3 by lipopolysaccharide. J Immunol 176:5720–5724

Patel DN, Bailey SR, Gresham JK et al (2006) TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells. Biochem Biophys Res Commun 347:1113–1120

Kawahara T, Kohjima M, Kuwano Y et al (2005) Helicobacter pylori lipopolysaccharide activates Rac1 and transcription of NADPH oxidase Nox1 and its organizer NOXO1 in guinea pig gastric mucosal cells. Am J Physiol Cell Physiol 288:C450–C457

Kistler GS, Caldwell PR, Weibel ER (1967) Development of fine structural damage to alveolar and capillary lining cells in oxygen-poisoned rat lungs. J Cell Biol 32:605–628

Selman M, Pardo A (2006) Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc 3:364–372

Maniatis NA, Orfanos SE (2008) The endothelium in acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 14:22–30

Al Ghouleh I, Magder S (2008) Nicotinamide adenine dinucleotide phosphate (reduced form) oxidase is important for LPS-induced endothelial cell activation. Shock 29:553–559

Miyoshi T, Yamashita K, Arai T, Yamamoto K, Mizugishi K, Uchiyama T (2010) The role of endothelial interleukin-8/NADPH oxidase 1 axis in sepsis. Immunology 131:331–339

Thannickal VJ, Horowitz JC (2006) Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3:350–356

Gauldie J (2002) Pro: inflammatory mechanisms are a minor component of the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 165:1205–1206

Horowitz JC, Thannickal VJ (2006) Epithelial-mesenchymal interactions in pulmonary fibrosis. Semin Respir Crit Care Med 27:600–612

Crestani B, Besnard V, Boczkowski J (2011) Signalling pathways from NADPH oxidase-4 to idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 43(8):1086–1089

Amara N, Goven D, Prost F, Muloway R, Crestani B, Boczkowski J (2010) NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax 65:733–738

Manoury B, Nenan S, Leclerc O et al (2005) The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis. Respir Res 6:11

Knight PR, Rutter T, Tait AR, Coleman E, Johnson K (1993) Pathogenesis of gastric particulate lung injury: a comparison and interaction with acidic pneumonitis. Anesth Analg 77:754–760

Goldman G, Welbourn R, Kobzik L, Valeri CR, Shepro D, Hechtman HB (1992) Reactive oxygen species and elastase mediate lung permeability after acid aspiration. J Appl Physiol 73:571–575

Segal BH, Davidson BA, Hutson AD et al (2007) Acid aspiration-induced lung inflammation and injury are exacerbated in NADPH oxidase-deficient mice. Am J Physiol Lung Cell Mol Physiol 292:L760–L768

Girard TD, Bernard GR (2007) Mechanical ventilation in ARDS: a state-of-the-art review. Chest 131:921–929

Fu Z, Costello ML, Tsukimoto K et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73:123–133

Syrkina O, Jafari B, Hales CA, Quinn DA (2008) Oxidant stress mediates inflammation and apoptosis in ventilator-induced lung injury. Respirology 13:333–340

Chess PR, O’Reilly MA, Sachs F, Finkelstein JN (2005) Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells. J Appl Physiol 99:1226–1232

Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM (2005) Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 289:L834–L841

Matsushita H, Lee KH, Tsao PS (2001) Cyclic strain induces reactive oxygen species production via an endothelial NAD(P)H oxidase. J Cell Biochem Suppl Suppl 36:99–106

Grote K, Flach I, Luchtefeld M et al (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92:e80–e86

Oeckler RA, Kaminski PM, Wolin MS (2003) Stretch enhances contraction of bovine coronary arteries via an NAD(P)H oxidase-mediated activation of the extracellular signal-regulated kinase mitogen-activated protein kinase cascade. Circ Res 92:23–31

Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, Black SM (2005) Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-beta1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am J Physiol Lung Cell Mol Physiol 289:L288–L289

Black SM, Grobe A, Mata-Greenwood E, Noskina Y (2004) Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Conf Proc IEEE Eng Med Biol Soc 7:5053–5056

Crapo JD, Barry BE, Foscue A, Shelburne J (1980) Structural and biochemical changes in rat lungs occurring during exposure to lethal and adaptive doses of oxygen. Am Rev Respir Dis 122:123–143

Barazzone C, Horowitz S, Donati YR, Rodriguez I, Piguet PF (1998) Oxygen toxicity in mouse lung: pathways to cell death. Am J Respir Cell Mol Biol 19:573–581

Smith LJ, Friedman H, Anderson JD (1988) Hyperoxic lung injury in mice: effect of neutrophil depletion and food deprivation. J Lab Clin Med 111:449–458

Crapo JD (1986) Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol 48:721–731

Budinger GR, Mutlu GM, Urich D et al (2010) Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am J Respir Crit Care Med 183(8):1043–1054

Parinandi NL, Kleinberg MA, Usatyuk PV et al (2003) Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol Lung Cell Mol Physiol 284:L26–L38

van Klaveren RJ, Roelant C, Boogaerts M, Demedts M, Nemery B (1997) Involvement of an NAD(P)H oxidase-like enzyme in superoxide anion and hydrogen peroxide generation by rat type II cells. Thorax 52:465–471

Zhang X, Shan P, Sasidhar M et al (2003) Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium. Am J Respir Cell Mol Biol 28:305–315

Usatyuk PV, Romer LH, He D et al (2007) Regulation of hyperoxia-induced NADPH oxidase activation in human lung endothelial cells by the actin cytoskeleton and cortactin. J Biol Chem 282:23284–23295

Brueckl C, Kaestle S, Kerem A et al (2006) Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol 34:453–463

Natarajan V, Pendyala S, Gorshkova IA et al (2008) Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid Redox Signal 11(4):747–764

Berg JT, White JE, Tsan MF (1995) Response of alveolar macrophage-depleted rats to hyperoxia. Exp Lung Res 21:175–185

Boyce NW, Campbell D, Holdsworth SR (1989) Granulocyte independence of pulmonary oxygen toxicity in the rat. Exp Lung Res 15:491–498

Schultz MJ (2008) Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit 14:RA22–RA26

Oeckler RA, Hubmayr RD (2007) Ventilator-associated lung injury: a search for better therapeutic targets. Eur Respir J 30:1216–1226

Thompson BT (2010) Corticosteroids for ARDS. Minerva Anestesiol 76:441–447

Thompson BT (2006) Intensive insulin therapy reduced morbidity but not mortality in patients in the medical intensive care unit. ACP J Club 145:34

Willson DF, Thomas NJ, Markovitz BP et al (2005) Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA 293:470–476

Frank AJ, Thompson BT (2010) Pharmacological treatments for acute respiratory distress syndrome. Curr Opin Crit Care 16:62–68