Effect of counterion hydration numbers on the development of Electroconvection at the surface of heterogeneous cation-exchange membrane modified with an MF-4SK film

Petroleum Chemistry - Tập 56 - Trang 440-449 - 2016
V. V. Gil1, M. A. Andreeva1,2, N. D. Pismenskaya1, V. V. Nikonenko1, C. Larchet2, L. Dammak2
1Kuban State University, Krasnodar, Russia
2Institut de Chimie et des Matériaux Paris-Est, UMR7182 CNRS–Université Paris-Est, Thiais, France

Tóm tắt

The transport of sodium, calcium, and magnesium ions through the heterogeneous cationexchange membrane MK-40, surface modified with a thin (about 15 μm) homogeneous film MF-4SK. By using chronopotentiometry and voltammetry techniques, it has been shown that the combination of relatively high hydrophobicity of the film surface with its electrical and geometrical (surface waviness) heterogeneity creates conditions for the development of electroconvection, which considerably enhances mass transfer in overlimiting current regimes. The electroconvection intensity substantially depends on the degree of counterion hydration. Highly hydrated calcium and magnesium ions involve in motion a much larger volume of water as compared with sodium ions. When constant overlimiting direct current is applied to the membrane, electroconvective vortices in 0.02 M CaCl2 and MgCl2 solutions are generated already within 5–8 s, a duration that is the transition time characterizing the change of the transfer mechanism in chronopotentiometry. The generation of vortices is manifested by potential oscillations in the initial portion of chronopotentiograms; no oscillation has been observed in the case of 0.02 M NaCl solution. More intense electroconvection in the case of doubly charged counterions also causes a reduction in the potential drop (Δφ) at both short times corresponding to the initial portion of chronopotentiograms and long times when the quasi-steady state is achieved. At a fixed ratio of current to its limiting value, Δφ decreases in the order Na+ > Ca2+ > Mg2+.

Tài liệu tham khảo

H. Strathmann, Desalination 264, 268 (2010). V. V. Nikonenko, A. V. Kovalenko, M. K. Urtenov, et al., Desalination 342, 85 (2014). R. Kwak, G. Guan, W. K. Peng, and J. Han, Desalination 308, 138 (2013). N. A. Mishchuk, Adv. Colloid Interface Sci. 160, 16 (2010). V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova, et al., Adv. Colloid Interface Sci. 160, 101 (2010). N. Pismenskaya, N. Melnik, E. Nevakshenova, et al., Int. J. Chem. Eng. 2012, 528290 (2012). S. Mikhaylin, V. Nikonenko, N. Pismenskaya, et al., Desalination. (2015) doi.org/10.1016/j.desal.2015.09.011 I. Rubinstein and B. Zaltzman, Phys. Rev. Lett. 114, 114502 (2015). V. M. Volgin, A. P. Grigin, and A. D. Davydov, Russ. J. Electrochem. 39, 371 (2003). I. Rubinstein and B. Zaltzman, Adv. Colloid Interface. Sci. 159, 117 (2010). V. G. Levich, Physicochemical Hydrodynamics (Prentice Hall, Englewood Cliffs, NJ, 1962). I. Rubinstein and L. Shtilman, J. Chem. Soc., Faraday Trans. 75, 231 (1979). M. A.-Kh. Urtenov, E. V. Kirillova, N. M. Seidova, and V. V. Nikonenko, J. Phys. Chem. B 111, 14208 (2007). S. S. Dukhin, Adv. Colloid Interface Sci. 35, 173 (1991). N. A. Mishchuk and P. V. Takhistov, Colloids Surf. A 95, 119 (1995). S. S. Dukhin and N. A. Mishchuk, Kolloid. Zh. 49, 1197 (1987). M. K. Urtenov, A. M. Uzdenova, A. V. Kovalenko, et al., J. Membr. Sci. 447, 190 (2013). I. Rubinstein and B. Zaltzman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Interdiscip. Top. 62, 2238 (2000). S. V. Pham, Z. Li, K. M. Lim, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Interdiscip. Top. 86, 046310 (2012). V. S. Shelistov, E. A. Demekhin, and G. S. Ganchenko, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Interdiscip. Top. 90, 013001 (2014). R. Kwak, V. S. Pham, K. M. Lim, and J. Han, Phys. Rev. Lett. 110, 114501 (2013). J.-H. Choi, H.-J. Lee, and S.-H. Moon, J. Colloid Interface Sci. 238, 188 (2001). E. D. Belashova, N. A. Melnik, N. D. Pismenskaya, et al., Electrochim. Acta 59, 412 (2012). N. D. Pismenskaya, V. V. Nikonenko, N. A. Melnik, et al., J. Phys. Chem. B 116, 2145 (2012). R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Dover, New York, 2003), 2nd Ed. T. Badessa and V. Shaposhnik, J. Membr. Sci. 498, 86 (2016). M. Pavlov, P. E. M. Siegbahn, and M. Sandstrom, J. Phys. Chem. A 102, 219 (1998). H.-W. Rösler, F. Maletzki, and E. Staude, J. Membr. Sci. 72, 171 (1992). C. Larchet, S. Nouri, B. Auclair, et al., Adv. Colloid Interface Sci. 139, 45 (2008). H. J. S. Sand, Philos. Mag., 1 (1), 45 (1901). Z. Galus, Teoretyczne podstawy elektroanalizy chemicznej (Panstwowe Wydawnictwo naukowe, Warsaw, 1971). D. Lerche and H. Wolf, Bioelectrochem. Bioenerg. 2, 293 (1975). J. J. Krol, M. Wessling, and H. Strathmann, J. Membr. Sci. 162, 155 (1999). S. A. Mareev, D. Yu. Butylskii, N. D. Pismenskaya, and V. V. Nikonenko, J. Membr. Sci. 500, 171 (2016). J. S. Newman, Electrochemical Systems (Prentice Hall, Englewood Cliffs, NJ, 1973). A. V. Zhil’tsova, V. I. Vasil’eva, M. D. Malykhin, et al., Vestn. Voronezhsk. Gos. Univ., No. 2, 35 (2013). S. R. Maduar, A. V. Belyaev, V. Lobaskin, and O. I. Vinogradova, Phys. Rev. Lett. 114, 118301 (2015). I. Rubinstein, B. Zaltzman, and T. Pundik, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Interdiscip. Top. 65, 041507 (2002). A. M. Uzdenova, A. V. Kovalenko, M. K. Urtenov, and V. V. Nikonenko, Electrochem. Commun. 51, 1 (2015).