Hyperpolarized 129Xe nuclear magnetic resonance study of mesoporous silicon sponge materials
Tóm tắt
Mesoporous silicon sponge (MSS) is considered as a promising anode material for lithium ion batteries because of its preformed meso/macro porous structures that can accommodate large volume expansion during the lithiation process and its superior electrochemical performance. Temperature dependent hyperpolarized (HP) 129Xe NMR was applied to characterize the structure and porosity of MSS materials with varying pores and particle sizes. Our results reveal irregular pore structures with the presence of micropores inside the larger meso/macropore channels and each MSS material has its own characteristic pore environment with a varying degree of nonuniformity and connectivity of pores. This study demonstrates that HP 129Xe NMR is a potentially useful tool for providing a fingerprint of the structure and connectivity of the pores for each material, complementary to other characterization techniques.
Tài liệu tham khảo
M. Armand and J-M. Tarascon: Building better batteries. Nature 451, 652–657 (2008).
M.S. Whittingham: Materials challenges facing electrical energy storage. MRS Bull. 33, 411–419 (2008).
A.J. Smith, J.C. Burns, X. Zhao, D. Xiong, and J.R. Dahn: A high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 158, A447–A452 (2011).
Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupré, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, and D. Guyomard: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 21, 6201–6208 (2011).
M. Holzapfel, H. Buqa, F. Krumeich, F-M. Petrat, and C. Veit: Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 8, A516–A520 (2005).
M.N. Obrovac and L.J. Krause: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).
O.K. Park, Y. Cho, S. Lee, H-C. Yoo, H-K. Song, and J. Cho: Who will drive electric vehicles, olivine or spinel?Energy Environ. Sci. 4, 1621–1633 (2011).
A.J. Smith, H.M. Dahn, J.C. Burns, and J.R. Dahn: Long-term low-rate cycling of LiCoO2/graphite Li-ion cells at 55 °C. J. Electrochem. Soc. 159, A705–A710 (2012).
U. Kasavajjula, C. Wang, and A.J. Appleby: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007).
W-J. Zhang: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011).
X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012).
M.T. McDowell, I. Ryu, S.W. Lee, C. Wang, W.D. Nix, and Y. Cui: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034–6041 (2012).
M. Gu, Y. Li, X. Li, S. Hu, X. Zhang, W. Xu, S. Thevuthasan, D.R. Baer, J-G. Zhang, J. Liu, and C. Wang: In Situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 8439–8447 (2012).
X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M.J. Sailor, J-G. Zhang, and J. Liu: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014).
I.L. Moudrakovski, V.V. Terskikh, C.I. Ratcliffe, J.A. Ripmeester, L-Q. Wang, Y. Shin, and G.J. Exarhos: A 129Xe NMR study of functionalized ordered mesoporous silica. J. Phys. Chem. B 106, 5938–5946 (2002).
J.A. Ripmeester: Nuclear shielding of trapped xenon obtained by proton-enhanced, magic-angle spinning xenon-129 NMR spectroscopy. J. Am. Chem. Soc. 104, 289–290 (1982).
T. Ito and J. Fraissard: 129Xe NMR study of xenon adsorbed on Y zeolites. J. Chem. Phys. 76, 5225–5229 (1982).
C.I. Ratcliffe: Xenon NMR. Annu. Rep. NMR Spectrosc. 36, 123–221 (1998).
B.C. Grover: Noble-gas NMR detection through noble-gas-rubidium hyperfine contact interaction. Phys. Rev. Lett. 40, 391 (1978).
W. Happer, E. Miron, S. Schaefer, D. Schreiber, W.A. van Wingaarden, and X. Zeng: Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms. Phys. Rev. A 29, 3092–3110 (1984).
B. Driehuys, G.D. Cates, E. Miron, K. Sauer, D.K. Walter, and W. Happer: High-volume production of laser-polarized 129Xe. Appl. Phys. Lett. 69, 1668–1670 (1996).
I.C. Ruset, S. Ketel, and F.W. Hersman: Optical pumping system design for large production of hyperpolarized 129Xe. Phys. Rev. Lett. 96, 053002 (2006).
I.L. Moudrakovski, A. Nossov, S. Lang, S.R. Breeze, C.I. Ratcliffe, B. Simard, G. Santyr, and J.A. Ripmeester: Continuous flow NMR with hyperpolarized xenon for the characterization of materials and processes. Chem. Mater. 12, 1181–1183 (2000).
I.L. Moudrakovski, L-Q. Wang, T. Baumann, J.H. Satcher, Jr., G.J. Exarhos, C.I. Ratcliffe, and J.A. Ripmeester: Probing the geometry and interconnectivity of pores in organic aerogels using hyperpolarized 129Xe NMR spectroscopy. J. Am. Chem. Soc. 126, 5052–5053 (2004).
K. Knagge, J.R. Smith, L.J. Smith, J. Buriak, and D. Raftery: Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments. Solid State Nucl. Magn. Reson. 29, 85–89 (2006).
V.V. Terskikh, I.L. Moudrakovski, and V.M. Mastikhin: 129Xe nuclear magnetic resonance studies of the porous structure of silica gels. J. Chem. Soc., Faraday Trans. 89, 4239–4243 (1993).
J.A. Ripmeester and C.I. Ratcliffe: On the application of 129Xe NMR to the study of microporous solids. J. Phys. Chem. 94, 7652–7656 (1990).
V.V. Terskikh, I.L. Moudrakovski, S.R. Breeze, S. Lang, C.I. Ratcliffe, J.A. Ripmeester, and A. Sayari: A general correlation for the 129Xe NMR chemical shift-pore size relationship in porous silica-based materials. Langmuir 18, 5653–5656 (2002).
L-Q. Wang, D. Wang, L. Liu, G.J. Exarhos, S. Pawsey, and I. Moudrakovski: Probing porosity and pore interconnectivity in crystalline mesoporous TiO2 using hyperpolarized 129Xe NMR. J. Phys. Chem. C 113, 6577–6583 (2009).
L.T. Canham: Characterization challenges with porous silicon. In Handbook of Porous Silicon, L.T. Canham, ed. (Springer, Switzerland, 2014); p. 405.
A. Loni: Gas adsorption analysis of porous silicon. In Handbook of Porous Silicon, L.T. Canham, ed. (Springer, Switzerland, 2014); p. 405.
M.J. Sailor: Porous Silicon in Practice: Preparation, Characterization, and Applications (Wiley-VCH, Weinheim, Germany, 2012); p. 249.