Sensitivity of two methods to detect Mycoplasma agalactiae in goat milk
Tóm tắt
Laboratory diagnostic techniques able to detect Mycoplasma agalactiae are essential in contagious agalactia in dairy goats. This study was designed: 1) to determine the detection limits of PCR and culture in goat milk samples, 2) to examine the effects of experimental conditions including the DNA extraction method, PCR technique and storage conditions (fresh versus frozen stored milk samples) on these methods and 3), to establish agreement between PCR and culture techniques using milk samples from goats with mastitis in commercial dairy herds. The study was conducted both on artificially inoculated and field samples. Our findings indicate that culture is able to detect M. agalactiae in goat milk at lower concentrations than PCR. Qualitative detection of M.agalactiae by culture and PCR was not affected by sample freezing, though the DNA extraction method used significantly affected the results of the different PCR protocols. When clinical samples were used, both techniques showed good agreement. The results from this study indicate that both culture and PCR are able to detect M. agalactiae in clinical goat mastitis samples. However, in bulk tank milk samples with presumably lower M. agalactiae concentrations, culture is recommended within the first 24 h of sample collection due to its lower limit of detection. To improve the diagnostic sensitivity of PCR in milk samples, there is a need to increase the efficiency of extracting DNA from milk samples using protocols including a previous step of enzymatic digestion.
Tài liệu tham khảo
Corrales JC, Esnal A, De La Fe C, Sánchez A, Assunçao P, Poveda JB, et al. Contagious agalactia in small ruminants. Small Ruminant Res. 2007;68:154–66.
Amores J, Sánchez A, Gómez-Martín A, Corrales JC, Contreras A, De La Fe C. Surveillance of Mycoplasma agalactiae and Mycoplasma mycoides subsp. capri in dairy goat herds. Small Ruminant Res. 2012;102:89–93.
Nicholas, R: Contagious agalactia. In. Office International of Epizooties, editors. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Paris: Office International of Epizooties; 2008. p. 992–999.
Tola S, Idini G, Manunta D, Galleri G, Angioi A, Rocchigiani AM, et al. Rapid and specific detection of Mycoplasma agalactiae by polymerase chain reaction. Vet Microbiol. 1996;77–84.
Marenda MS, Sagne E, Poumarat F, Citti C. Suppression subtractive hybridization as a basis to assess Mycoplasma agalactiae and Mycoplasma bovis genomic diversity and species–specific sequences. Microbiology. 2005;151:475–89.
De La Fe C, Amores J, Tardy F, Sagne E, Nouvel L-X, Citti C. Unexpected genetic diversity of Mycoplasma agalactiae caprine isolates from an endemic geographically restricted area of Spain. BMC Vet Res. 2012;8:146–54.
Becker CAM, Ramos F, Sellal E, Moine S, Poumarat F, Tardy F. Development of a multiplex real-time PCR for contagious agalactia diagnosis in small ruminants. J Microbiol Methods. 2012;90:73–9.
Tola S, Angioi A, Rocchigiani AM, Idini G, Manunta D, Galleri G, et al. Detection of Mycoplasma agalactiae in sheep milk samples by polymerase chain reaction. Vet Microbiol. 1997;54:17–22.
Nicholas R, Baker S. Recovery of Mycoplasmas from Animals. In: Miles R, Nicholas R, editors. Methods in Molecular Biology. Volume 104. Totowa, New Jersey: Humana Press Inc; 1998. p. 37–44. Mycoplasma protocols.
Gómez-Martin A, De la Fe C, Amores J, Sánchez A, Contreras A, Paterna A, et al. Anatomic location of Mycoplasma mycoides subsp capri and Mycoplasma agalactiae in naturally infected goat male auricular carriers. Vet Microbiol. 2012;157:355–62.
Thrusfield M, Ortega C, De Blas I, Noordhuizen JP, Frankena K. Win Episcope 2.0: improved epidemiological software for veterinarymedicine. Vet Rec. 2001;148:567–72.
Thrusfield M. Diagnostic testing. In: Thrusfield, editor. Veterinary Epidemiology. Chapter 17. Oxford: M. Blackwell Science Ltd; 2005.p. 305–29.
Dean AG, Dean JA, Coulombier D, Brendel KA, Smith DC, Burton AH, et al. Epi Info, Version 6.04a, a word processing, database, and statistics program for public health on IBM-compatible microcomputers. Atlanta: Centers for Disease Control and Prevention; 1996.
Bickley J, Short JK, Mcdowell DG. Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calico ions. Lett Appl Microbiol. 1996;22:153–8.
Kinde H, DaMassa AJ, Wakenell PS, Petty R. Mycoplasma infection in a commercial goat dairy caused by Mycoplasma agalactiae and Mycoplasma mycoides subsp. mycoides (caprine biotype). J Vet Diagn Invest. 1994;6:423–7.
Castro-Alonso A, De la Fe C, Espinosa de los Monteros A, Rodríguez F, Andrada M, Poveda JB, et al. Chronological and immunohistochemical characterization of the mammary immunoinflammatory response in experimental caprine contagious agalactiae. Vet Immunol Immunopathol. 2010;136:43–54.
Oravcová K, López-Enríquez L, Rodríguez-Lázaro D, Hernández M. Mycoplasma agalactiae p40 Gene, a Novel Marker for Diagnosis of Contagious Agalactia in Sheep by Real-Time PCR: Assessment of Analytical Performance and In-House Validation Using Naturally Contaminated Milk Samples. J Clin Microbiol. 2009;2009(47):445–50.