Schottky barrier height engineering on MoS2 field-effect transistors using a polymer surface modifier on a contact electrode
Tóm tắt
Two-dimensional (2D) materials are highly sought after for their superior semiconducting properties, making them promising candidates for next-generation electronic and optoelectronic devices. Transition-metal dichalcogenides (TMDCs), such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are promising alternative 2D materials. However, the devices based on these materials experience performance deterioration due to the formation of a Schottky barrier between metal contacts and semiconducting TMDCs. Here, we performed experiments to reduce the Schottky barrier height of MoS2 field-effect transistors (FETs) by lowering the work function (Фm = Evacuum − EF,metal) of the contact metal. We chose polyethylenimine (PEI), a polymer containing simple aliphatic amine groups (–NH2), as a surface modifier of the Au (ФAu = 5.10 eV) contact metal. PEI is a well-known surface modifier that lowers the work function of various conductors such as metals and conducting polymers. Such surface modifiers have thus far been utilized in organic-based devices, including organic light-emitting diodes, organic solar cells, and organic thin-film transistors. In this study, we used the simple PEI coating to tune the work function of the contact electrodes of MoS2 FETs. The proposed method is rapid, easy to implement under ambient conditions, and effectively reduces the Schottky barrier height. We expect this simple and effective method to be widely used in large-area electronics and optoelectronics due to its numerous advantages.
Tài liệu tham khảo
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6:147–50. https://doi.org/10.1038/nnano.2010.279.
Zhang Z, Chen P, Duan X, Zang K, Luo J, Duan X. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science. 2017;357:788–92. https://doi.org/10.1126/science.aan6814.
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–4. https://doi.org/10.1126/science.1171245.
Pradhan NRRD, Feng S, Xin Y, Memaran S, Moon B-H, Terrones H, Terrones M, Balicas L. Field-effect transistors based on few-layered α-MoTe2. ACS Nano. 2014;8:5911–20. https://doi.org/10.1021/nn501013c.
Shen DW, Xie BP, Zhao JF, Yang LX, Fang L, Shi J, He RH, Lu DH, Wen HH, Feng DL. Novel mechanism of a charge density wave in a transition metal dichalcogenide. Phys Rev Lett. 2007;99:216404. https://doi.org/10.1103/PhysRevLett.99.216404.
Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81:109–62. https://doi.org/10.1103/RevModPhys.81.109.
Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91. https://doi.org/10.1038/nmat1849.
Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T, Geim AK. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011;11:2396–9. https://doi.org/10.1021/nl200758b.
Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10:569–81. https://doi.org/10.1038/nmat3064.
Lee G-H, Cooper RC, An SJ, Lee S, Van Der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W. High-strength chemical-vapor–deposited graphene and grain boundaries. Science. 2013;340:1073–6. https://doi.org/10.1126/science.1235126.
Wilson JA, Salvo FJD, Laborator SM. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv Phys. 1975;24:117–201. https://doi.org/10.1080/00018737500101391.
Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5:263–75. https://doi.org/10.1038/nchem.1589.
Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol. 2012;7:699–712. https://doi.org/10.1038/nnano.2012.193.
Xu X, Yao W, Xiao D, Heinz TF. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys. 2014;10:343–50. https://doi.org/10.1038/nphys2942.
Ramakrishna Matte H, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao C. MoS2 and WS2 analogues of graphene. Angew Chem Int Ed Engl. 2010;49:4059–62. https://doi.org/10.1002/anie.201000009.
Novoselov KS, Geim AK, Morozov SV, Jiang D-E, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9. https://doi.org/10.1126/science.1102896.
Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317:100–2. https://doi.org/10.1126/science.1141483.
Eknapakul T, King P, Asakawa M, Buaphet P, He R-H, Mo S-K, Takagi H, Shen K, Baumberger F, Sasagawa T. Electronic structure of a quasi-freestanding MoS2 monolayer. Nano Lett. 2014;14:1312–6. https://doi.org/10.1021/nl4042824.
Goyal V, Teweldebrhan D, Balandin AA. Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance. Appl Phys Lett. 2010;97:133117. https://doi.org/10.1063/1.3494529.
Benameur MM, Radisavljevic B, Heron JS, Sahoo S, Berger H, Kis A. Visibility of dichalcogenide nanolayers. Nanotechnology. 2011;22:125706. https://doi.org/10.1088/0957-4484/22/12/125706.
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol. 2013;8:497–501. https://doi.org/10.1038/nnano.2013.100.
Tsai M-L, Su S-H, Chang J-K, Tsai D-S, Chen C-H, Wu C-I, Li L-J, Chen L-J, He J-H. Monolayer MoS2 heterojunction solar cells. ACS Nano. 2014;8:8317–22. https://doi.org/10.1021/nn502776h.
Das S, Chen H-Y, Penumatcha AV, Appenzeller J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013;13:100–5. https://doi.org/10.1021/nl303583v.
Mott NF. The theory of crystal rectifiers. Proc R Soc Lond A Math Phys Sci. 1939;171:27–38. https://doi.org/10.1098/rspa.1939.0051.
Schottky W. Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter. Z Phys. 1939;113:367–414. https://doi.org/10.1007/BF01340116.
Yuan H, Cheng G, You L, Li H, Zhu H, Li W, Kopanski JJ, Obeng YS, Hight Walker AR, Gundlach DJ. Influence of metal–MoS2 interface on MoS2 transistor performance: comparison of Ag and Ti contacts. ACS Appl Mater Interfaces. 2015;7:1180–7. https://doi.org/10.1021/am506921y.
Wang J, Yao Q, Huang CW, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C, Wu WW. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv Mater. 2016;28:8302–8. https://doi.org/10.1002/adma.201602757.
Fang H, Tosun M, Seol G, Chang TC, Takei K, Guo J, Javey A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013;13:1991–5. https://doi.org/10.1021/nl400044m.
Du Y, Liu H, Neal AT, Si M, Peide DY. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett. 2013;34:1328–30. https://doi.org/10.1109/LED.2013.2277311.
Hong S, Yoo G, Kim DH, Song WG, Le OK, Hong YK, Takahashi K, Omkaram I, Son DN, Kim S. The doping mechanism and electrical performance of polyethylenimine-doped MoS2 transistor. Phys Status Solidi C. 2017;14:1600262. https://doi.org/10.1002/pssc.201600262.
Chee SS, Seo D, Kim H, Jang H, Lee S, Moon SP, Lee KH, Kim SW, Choi H, Ham MH. Lowering the Schottky barrier height by graphene/Ag electrodes for high-mobility MoS2 field-effect transistors. Adv Mater. 2019;31:1804422. https://doi.org/10.1002/adma.201804422.
Allain A, Kang J, Banerjee K, Kis A. Electrical contacts to two-dimensional semiconductors. Nat Mater. 2015;14:1195–205. https://doi.org/10.1038/nmat4452.
Zhou YH, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan TM, Sojoudi H, Barlow S, Graham S, Bredas JL, Marder SR, Kahn A, Kippelen B. A universal method to produce low-work function electrodes for organic electronics. Science. 2012;336:327–32. https://doi.org/10.1126/science.1218829.
Benameur M, Radisavljevic B, Héron J, Sahoo S, Berger H, Kis A. Visibility of dichalcogenide nanolayers. Nanotechnology. 2011;22:125706. https://doi.org/10.1088/0957-4484/22/12/125706.
Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. Single-layer MoS2 phototransistors. ACS Nano. 2011;6:74–80. https://doi.org/10.1021/nn2024557.
Novoselov KS, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci. 2005;102:10451–3. https://doi.org/10.1073/pnas.0502848102.
Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam DWH, Tok AIY, Zhang Q, Zhang H. Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small. 2012;8:63–7. https://doi.org/10.1002/smll.201101016.
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010;10:1271–5. https://doi.org/10.1021/nl903868w.
Brivio J, Alexander DT, Kis A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 2011;11:5148–53. https://doi.org/10.1021/nl2022288.
Radisavljevic B, Whitwick MB, Kis A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano. 2011;5:9934–8. https://doi.org/10.1021/nn203715c.
Kim HJ, Park SP, Min WK, Kim DW, Park K, Kim HJ. Modulation of the Al/Cu2O Schottky barrier height for p-type oxide TFTs using a polyethylenimine interlayer. ACS Appl Mater Interfaces. 2021;13:31077–85. https://doi.org/10.1021/acsami.1c04145.
Sze SM, Li Y, Ng KK. Physics of semiconductor devices. Hoboken: John wiley & sons; 2021.
Kaushik N, Nipane A, Basheer F, Dubey S, Grover S, Deshmukh MM, Lodha S. Schottky barrier heights for Au and Pd contacts to MoS2. Appl Phys Lett. 2014;105:113505. https://doi.org/10.1063/1.4895767.