Controlled synthesis and characterization of layered manganese oxide nanostructures with different morphologies
Tóm tắt
Layered manganese oxide nanostructures with different morphologies, such as nanowire bundles, cotton agglomerates, and platelikes were successfully fabricated by a simple and template-free hydrothermal method based on a reaction of KMnO4 and KOH solutions with different concentrations. The obtained nanowire bundles were assembled by nanowires with diameters of 10 to 200 nm and lengths up to 5–10 μm. The cotton agglomerates were composed of manganese oxide layers with a thickness of about 10 nm. Both the concentration of KOH solutions and the reaction temperature played an important role in the formation of layered manganese oxide nanostructures with different morphologies. XRD, SEM, TEM, HRTEM, SAED, TG-DTA, and chemical analysis were employed to characterize these materials. On the basis of the experimental results, a possible formation mechanism of layered manganese oxide nanostructures with different morphologies was presented.
Tài liệu tham khảo
Bach S, Henry M, Baffier N, Livage J (1990) Sol–gel synthesis of manganese oxides. J Solid State Chem 88:325–333. doi:10.1016/0022-4596(90)90228-P
Chen R, Zavalij P, Whittingham MS (1996) Hydrothermal synthesis and characterization of K x MnO2 · yH2O. Chem Mater 8:1275–1280. doi:10.1021/cm950550+
Feng Q, Kanoh H, Ooi K (1999) Manganese oxide porous crystals. J Mater Chem 9:319–333. doi:10.1039/a805369c
Ferreira OP, Otubo L, Romano R, Alves OL (2006) One-dimensional nanostructures from layered manganese oxide. Cryst Growth Des 6:601–606. doi:10.1021/cg0503503
Ge J, Zhuo L, Yang F, Tang B, Wu L, Tung C (2006) One-dimensional hierarchical layered K x MnO2 (x < 0.3) nanoarchitectures: synthesis, characterization, and their magnetic properties. J Phys Chem B 110:17854–17859. doi:10.1021/jp0631127
Japan Industrial Standard (JIS): JIS M8233 (1969) Methods for determination of active oxygen in manganese ores. Japanese Standards Association, Tokyo
Ma R, Bando Y, Zhang L, Sasaki T (2004a) Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv Mater 16:918–922. doi:10.1002/adma.200306592
Ma R, Bando Y, Sasaki T (2004b) Directly rolling nanosheets into nanotubes. J Phys Chem B 108:2115–2119. doi:10.1021/jp037200s
Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949. doi:10.1126/science.1058120
Peng ZA, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395. doi:10.1021/ja0027766
Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353. doi:10.1021/ja0173167
Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A et al (2000) Shape control of CdSe nanocrystals. Nature 404:59–61. doi:10.1038/35003535
Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971. doi:10.1126/science.281.5379.969
Shen X, Ding Y, Liu J, Cai J, Laubernds K, Zerger RP et al (2005) Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv Mater 17:805–809. doi:10.1002/adma.200401225
Shen X, Ding Y, Hanson JC, Aindow M, Suib SL (2006) In situ synthesis of mixed-valent manganese oxide nanocrystals: an in situ synchrotron X-ray diffraction study. J Am Chem Soc 128:4570–4571. doi:10.1021/ja058456+
Shi W, Peng H, Wang N, Li CP, Xu L, Lee CS et al (2001) Free-standing single crystal silicon nanoribbons. J Am Chem Soc 123:11095–11096. doi:10.1021/ja0162966
Song XC, Zhao Y, Zheng YF (2007) Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process. Cryst Growth Des 7:159–162. doi:10.1021/cg060536h
Trentler TJ, Goel SC, Hickman KM, Viano AM, Ching MY, Beatty AM et al (1997) Solution–liquid–solid growth of indium phosphide fibers from organometallic precursors: elucidation of molecular and nonmolecular components of the pathway. J Am Chem Soc 119:2172–2181. doi:10.1021/ja9640859
Wang ZL, Feng X (2003) Polyhedral shapes of CeO2 nanoparticles. J Phys Chem B 107:13563–13566. doi:10.1021/jp036815m
Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem Eur J 9:300–306. doi:10.1002/chem.200390024
Wang L, Ebina Y, Takada K, Sasaki T (2004) Ultrathin hollow nanoshells of manganese oxide. Chem Commun (Camb) 9:1074–1075. doi:10.1039/b402209b
Wu M, Xiong Y, Jia Y, Niu H, Qi H, Ye J et al (2005) Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chem Phys Lett 401:374–379. doi:10.1016/j.cplett.2004.11.080
Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi:10.1002/adma.200390087
Yang L, Zhu Y, Wang W, Tong H, Ruan M (2006) Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid. J Phys Chem B 110:6609–6614. doi:10.1021/jp0569739
Zhang L, Liu Z, Lv H, Tang X, Ooi K (2007) Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J Phys Chem C 111:8418–8423. doi:10.1021/jp070982v
Zhao L, Zhang H, Xing Y, Song S, Yu S, Shi W et al (2007) Morphology-controlled synthesis of magnetites with nanoporous structures and excellent magnetic properties. Chem Mater 20:198–204. doi:10.1021/cm702352y