Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage

Joule - Tập 1 - Trang 306-327 - 2017
Zheng Li1, Menghsuan Sam Pan1, Liang Su2, Ping-Chun Tsai1, Andres F. Badel2, Joseph M. Valle1, Stephanie L. Eiler1, Kai Xiang1, Fikile R. Brushett2, Yet-Ming Chiang1
1Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Tài liệu tham khảo

US Department of Energy (2015). Revolution now: the future arrives for five clean energy technologies–2015 update. https://energy.gov/eere/downloads/revolution-now-future-arrives-five-clean-energy-technologies-2015-update. Mason, 1958 Wadia, 2011, Resource constraints on the battery energy storage potential for grid and transportation applications, J. Power Sourc., 196, 1593, 10.1016/j.jpowsour.2010.08.056 Bruce, 2011, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 11, 19, 10.1038/nmat3191 Pang, 2016, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes, Nat. Energy, 1, 16132, 10.1038/nenergy.2016.132 Yang, 2013, Nanostructured sulfur cathodes, Chem. Soc. Rev., 42, 3018, 10.1039/c2cs35256g Hueso, 2013, High temperature sodium batteries: status, challenges and future trends, Energy Environ. Sci., 6, 734, 10.1039/c3ee24086j Ge, 2004, Study of a high power density sodium polysulfide/bromine energy storage cell, J. Appl. Electrochem., 34, 181, 10.1023/B:JACH.0000009936.82613.ad Xia, Y., Yufit, V., and Brandon, N.P. (2015). Polysulphide air redox flow battery - a novel solution for grid scale energy storage. ECS meeting Abstracts MA2015-03, 654. Zito, R. (1997). Process for energy storage and/or power delivery with means for restoring electrolyte balance. US Patent 5612148 A, filed April 13, 1994, and published March 18, 1997. Visco, S.J., Nimon, Y.S., Katz, B.D., Jonghe, L.C.D., Goncharenko, N., Loginova, V., and Company, P.B. (2012). Aqueous electrolyte lithium sulfur batteries. US Patent 20130122334 A1, filed May 18, 2012, and published May 16, 2013. Demir-Cakan, 2014, An aqueous electrolyte rechargeable Li-ion/polysulfide battery, J. Mater. Chem. A, 2, 9025, 10.1039/C4TA01308E Demir-Cakan, 2015, Use of ion-selective polymer membranes for an aqueous electrolyte rechargeable Li-ion–polysulphide battery, J. Mater. Chem. A, 3, 2869, 10.1039/C4TA05756B Li, 2016, Long-life, high-voltage acidic Zn–Air batteries, Adv. Energy Mater., 6, 1502054, 10.1002/aenm.201502054 Brandon, N., Kucernak, A., and Yufit, V. (2012). Regenerative fuel cells. Patent WO 2012/038379 Al, filed September 19, 2011, and published March 29, 2012. Darling, 2014, Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries, Energy Environ. Sci., 7, 3459, 10.1039/C4EE02158D Ha, 2015, Estimating the system price of redox flow batteries for grid storage, J. Power Sourc., 296, 122, 10.1016/j.jpowsour.2015.07.004 Braff, 2016, Value of storage technologies for wind and solar energy, Nat. Clim. Change, 6, 964, 10.1038/nclimate3045 Bharmoria, 2014, Temperature-dependent solubility transition of Na2SO4 in water and the effect of NaCl therein: solution structures and salt water dynamics, J. Phys. Chem. B, 118, 12734, 10.1021/jp507949h Zhu, 2015, Solubility of Na2CO3 and NaHCO3 in aqueous sodium sulfate solutions and its application to separating Na2CO3 and Na2SO4 salt mixtures, Ind. Eng. Chem. Res., 54, 5345, 10.1021/acs.iecr.5b00381 Hayashi, 2012, Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries, Nat. Commun., 3, 856, 10.1038/ncomms1843 Lefèvre, 2009, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, 324, 71, 10.1126/science.1170051 Wu, 2011, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science, 332, 443, 10.1126/science.1200832 Huynh, 2014, A functionally stable manganese oxide oxygen evolution catalyst in acid, J. Am. Chem. Soc., 136, 6002, 10.1021/ja413147e Frydendal, 2015, Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-Stabilized MnO2, Adv. Energy Mater., 5, 1500991, 10.1002/aenm.201500991 Spendelow, 2014 Antoine, 2001, Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®, J. Electroanal. Chem., 499, 85, 10.1016/S0022-0728(00)00492-7 Giggenbach, 1971, Optical spectra of highly alkaline sulfide solutions and the second dissociation constant of hydrogen sulfide, Inorg. Chem., 10, 1333, 10.1021/ic50101a002 Giggenbach, 1972, Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20.deg, Inorg. Chem., 11, 1201, 10.1021/ic50112a009 Licht, 1988, Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides, J. Electrochem. Soc., 135, 2971, 10.1149/1.2095471 Licht, 1987, An energetic medium for electrochemical storage utilizing the high aqueous solubility of potassium polysulfide, J. Electrochem. Soc., 134, 2137, 10.1149/1.2100838 Giggenbach, 1974, Equilibriums involving polysulfide ions in aqueous sulfide solutions up to 240.deg, Inorg. Chem., 13, 1724, 10.1021/ic50137a038 O’Brien, 1977, Kinetics of oxygenation of reduced sulfur species in aqueous solution, Environ. Sci. Technol., 11, 1114, 10.1021/es60135a009 Peramunage, 1993, A solid sulfur cathode for aqueous batteries, Science, 261, 1029, 10.1126/science.261.5124.1029 Giggenbach, 1974, Kinetics of the polysulfide-thiosulfate disproportionation up to 240.deg, Inorg. Chem., 13, 1730, 10.1021/ic50137a039 Licht, 1986, The high aqueous solubility of K 2 S and its effect on bulk and photoelectrochemical characteristics of Cd ( SeTe )/S x = cells I. Polysulfide variation at constant sulfur/sulfide ratio, J. Electrochem. Soc., 133, 272, 10.1149/1.2108561 Chen, 2016, A low-dissipation, pumpless, gravity-induced flow battery, Energy Environ. Sci., 9, 1760, 10.1039/C6EE00874G Fan, 2014, Polysulfide flow batteries enabled by percolating nanoscale conductor networks, Nano Lett., 14, 2210, 10.1021/nl500740t U.S. Department of Energy (2016). ARPA-E funding opportunity Announcement IONICS DE-FOA-0001478. https://arpa-e-foa.energy.gov/. Aetukuri, 2015, Flexible ion-conducting composite membranes for lithium batteries, Adv. Energy Mater., 5, 1500265, 10.1002/aenm.201500265 Ohara Corp. (2016). Lithium-Ion Conducting Glass-Ceramics. http://www.oharacorp.com/lic-gc.html. Nykvist, 2015, Rapidly falling costs of battery packs for electric vehicles, Nat. Clim. Change, 5, 329, 10.1038/nclimate2564 Task Committee on Pumped Storage of the Hydropower Committee of the Energy Division of ASCE, 1993 Akhil, 2015 Ingersoll, 2011 Hand, 2012 Budischak, 2013, Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time, J. Power Sourc., 225, 60, 10.1016/j.jpowsour.2012.09.054 Steward, 2009 Weber, 2011, Redox flow batteries: a review, J. Appl. Electrochem., 41, 1137, 10.1007/s10800-011-0348-2 Li, 2015, Hierarchical pore-in-pore and wire-in-wire catalysts for rechargeable Zn– and Li–air batteries with ultra-long cycle life and high cell efficiency, Energy Environ. Sci., 8, 3274, 10.1039/C5EE02616D