A Stochastic Projection Method for Fluid Flow
Tóm tắt
Từ khóa
Tài liệu tham khảo
Le Maı̂tre, 2001, A stochastic projection method for fluid flow. I. Basic formulation, J. Comput. Phys., 173, 480
Cameron, 1947, The orthogonal development of nonlinear functionals in series of Fourier–Hermite functionals, Ann. Math., 48, 385, 10.2307/1969178
Chorin, 1971, Hermite expansions in Monte-Carle computation, J. Comput. Phys., 8, 472, 10.1016/0021-9991(71)90025-8
Maltz, 1979, Variance reduction in Monte Carlo computations using multi-dimensional Hermite polynomials, J. Comput. Phys., 32, 345, 10.1016/0021-9991(79)90150-5
Meecham, 1968, Use of the Wiener–Hermite expansion for nearly normal turbulence, J. Fluid Mech., 32, 225, 10.1017/S0022112068000698
Crow, 1970, Relationship between a Wiener–Hermite expansion and an energy cascade, J. Fluid Mech., 41, 387, 10.1017/S0022112070000654
Ghanem, 1991
De Vahl Davis, 1983, Natural convection in a square cavity: A comparison exercice, Int. J. Numer. Methods Fluids, 3, 227, 10.1002/fld.1650030304
Le Quéré, 1985, Computation of natural-convection in two-dimensional cavities with Tschebyscheff polynomials, J. Comput. Phys., 57, 210, 10.1016/0021-9991(85)90043-9
Le Quéré, 1991, Accurate solution to the square thermally driven cavity at high Rayleigh number, Comput. Fluids, 20, 29, 10.1016/0045-7930(91)90025-D
Chenoweth, 1986, Natural convection in an enclosed vertical layer with large horizontal temperature differences, J. Fluid Mech., 169, 173, 10.1017/S0022112086000587
Le Quéré, 1992, A Chebyshev collocation algorithm for 2D non-Boussinesq convection, J. Comput. Phys., 103, 320, 10.1016/0021-9991(92)90404-M
H. Paillere, and, P. Le Quéré, Modelling and simulation of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers, presented at 12th Seminar, Computational Fluid Dynamics, CEA/Nuclear Reactor Division, Saclay, France, 2000.
M. Christon, P. Gresho, and S. Sutton, Computational predictability of natural convection flows in enclosure, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1465–1468.
D. M. Christopher, Numerical prediction of natural convection flows in a tall enclosure, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1469–1471.
G. Comini, M. Manzan, C. Nonino, and O. Saro, Finite element solutions for natural convection in a tall rectangular cavity, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1472–1476.
G. Groce and M. Favero, Simulation of natural convection flow in enclosures by an unstaggered grid Finite volume algorithm, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1477–1481.
Gresho, 2001, 1482
H. Johnston and R. Krasny, Computational predictability of natural convection flows in enclosures: A benchmark problem, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1486–1489.
S.-E. Kim and D. Choudhury, Numerical investigation of laminar natural convection flow inside a tall cavity using a finite volume based Navier–Stokes solver, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1490–1492.
T.-W. Pan and R. Glowinski, A projection/wave-like equation method for natural convection flows in enclosures, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1493–1496.
A. G. Salinger, R. B. Lehoucq, R. P. Pawlowski, and J. N. Shadid, Understanding the 8:1 cavity problem via scalable stability analysis algorithms, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1497–1500.
S. A. Suslov and S. Paolucci, A Petrov–Galerkin method for flows in cavities, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1501–1504.
K. W. Westerberg, Thermally driven flow in a cavity using the Galerkin finite element method, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1505–1508.
S. Xin and P. Le Quéré, An extended Chebyshev pseudo-spectral contribution to CPNCFE benchmark, in Computational Fluid and Solid Mehcanics, edited by K. Bathe, Proceedings of First MIT Conference on Computational Fluid and Solid Mechanics Elsevier, Amsterdam, 2001, pp. 1509–1513.
Lankhorst, 1991
Loève, 1997
Abramowitz, 1970
O. M. Knio, and, R. G. Ghanem, Polynomial Chaos Product and Moment Formulas: A User Utility, Technical report, The Johns Hopkins University, Baltimore, to appear.
McKay, 1979, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239, 10.2307/1268522
Ghanem, 1998, Stochastic finite element analysis for multiphase flow in heterogeneous porous media, Trans. Porous Media, 32, 239, 10.1023/A:1006514109327
Ghanem, 1998, Probabilistic characterization of transport in heterogeneous porous media, Comput. Methods Appl. Mech. Eng., 158, 199, 10.1016/S0045-7825(97)00250-8
Chorin, 1967, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 12, 10.1016/0021-9991(67)90037-X
Kim, 1985, Application of a fractional-step method to the incompressible Navier–Stokes equations, J. Comput. Phys., 59, 308, 10.1016/0021-9991(85)90148-2
Eldred, 2002, DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Sensitivity Analysis, and Uncertainty Quantification, Version 3.0 Reference Manual
Wojtkiewicz, 2001, A Toolkit for Uncertainty Quantification in Large Computational Engineering Models, Meeting Paper 2001-1455
M. S. Eldred, Optimization Strategies for Complex Engineering Applications, Sandia Technical Report SAND98-0340, Sandia National Laboratories, 1998.