Modelling High Temperature Oxidation in Iron–Chromium Systems: Combined Kinetic and Thermodynamic Calculation of the Long-Term Behaviour and Experimental Verification

Springer Science and Business Media LLC - Tập 76 - Trang 247-258 - 2011
M. Auinger1, R. Naraparaju2, H.-J. Christ2, M. Rohwerder1
1Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
2Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany

Tóm tắt

The oxidation of two industrial steels with different chromium content (9 and 12 wt%), oxidised for up to 120 h at 750 °C in air has been investigated experimentally and by means of two-dimensional theoretical methods. The numerical model approach, which we call Applied Simulations of Thermodynamic Reactions and Interphase Diffusion (ASTRID), links the thermodynamic library ChemApp (GTT-Technologies, Germany) to the numerical programme COMSOL (COMSOL Inc., USA). This allows convenient implementations of complex geometries and to probe the oxidation behaviour in “real-life” microstructures under given conditions. Satisfying agreements with experimental findings for the total oxidation depth and local oxide composition have been obtained. Enhancements in the computing speed, as compared to the initial programme InCorr, enable a better resolution of the spatial phase distribution and allow the consideration of different diffusion coefficients corresponding to the newly formed (oxide) phases within the same calculation time.

Tài liệu tham khảo

D. Young, High Temperature Oxidation and Corrosion of Metals, 1st edn. (Elsevier, Oxford, 2008). P. Kofstad, High Temperature Oxidation of Metals (John Wiley & Sons, New York, 1966). W. J. Quadakkers, J. Żurek, and M. Hänsel, Journal of Metals 61, 44 (2009). V. B. Trindade, U. Krupp, and H. J. Christ, Journal of Materials Engineering and Performance 17, 915 (2008). I. Parezanović and M. Spiegel, Surface Engineering 20, 285 (2004). S. Burk, B. Gorr, V. B. Trindade, and H. J. Christ, Oxidation of Metals 73, 163 (2010). A. N. Hansson, J. H. Hattel, K. V. Dahl, and M. A. J. Somers, Modelling and Simulation in Materials Science and Engineering 17, 035009 (2009). K. Bongartz, W. J. Quadakkers, R. Schulten, and H. Nickel, Metallurgical Transactions A 20, 1021 (1989). C. Gugenberger, R. Spatschek, and K. Kassner, Physical Review E 78, 016703 (2008). U. Krupp and H. J. Christ, Journal of Phase Equilibria and Diffusion 26, 487 (2005). J. O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, CALPHAD 26, 273 (2002). I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, 3rd edn. (John Wiley & Sons LTD, New York, 1995). H. Mehrer, Landolt Börnstein—Numerical Data and Functional Relationships in Science and Technology: Group III, Vol. 26 (Springer, Berlin, 1990). S. Yamaguchi and M. Someno, Transactions of the Japan Institute of Metals 23, 259 (1982). A. G. Crouch and J. Robertson, Acta Metallurgica et Materialia 38, 2567 (1990). W. C. Hagel, Journal of the American Ceramic Society 48, 70 (1965). L. Himmel, R. T. Mehl, and C. E. Birchenall, Journal of Metals 5, 827 (1953). W. C. Hagel and A. U. Seybolt, Journal of the Electrochemical Society 108, 1146 (1961). A. C. S. Sabioni, A. M. Huntz, F. Millot, and C. Monty, Philosophical Magazine A 66, 351 (1992). K. Kuroda, P. A. Labun, G. Welsch, and T. E. Mitchell, Oxidation of Metals 19, 117 (1983). M. Fukumoto, S. Maeda, S. Hayashi, and T. Narita, Oxidation of Metals 55, 401 (2001). G. R. Wallwork and A. Z. Hed, Oxidation of Metals 3, 171 (1971).