On bounded degree plane strong geometric spanners
Tài liệu tham khảo
N. Bonichon, C. Gavoille, N. Hanusse, D. Ilcinkas, Connections between theta-graphs, Delaunay triangulations, and orthogonal surfaces, in: WG, 2010.
N. Bonichon, C. Gavoille, N. Hanusse, L. Perkovic, Plane spanners of maximum degree 6, in: ICALP, 2010.
Bose, 2011, The spanning ratio of the Delaunay triangulation is greater than π/2, Comp. Geom.: Theory Appl., 44, 121, 10.1016/j.comgeo.2010.09.009
P. Bose, J. Gudmundsson, M.H.M. Smid, Constructing plane spanners of bounded degree and low weight, in: ESA, 2002, pp. 234–246.
Bose, 2004, Approximating geometric bottleneck shortest paths, Comp. Geom.: Theory Appl., 29, 233, 10.1016/j.comgeo.2004.04.003
P. Bose, M.H.M. Smid, On plane geometric spanners: A survey and open problems, 2009, submitted for publication.
Bose, 2009, Delaunay and diamond triangulations contain spanners of bounded degree, Internat. J. Comput. Geom. Appl., 19, 119, 10.1142/S0218195909002861
Das, 1996, Constructing degree-3 spanners with other sparseness properties, Internat. J. Found. Comput. Sci., 7, 121, 10.1142/S0129054196000105
Kanj, 2010, On spanners and lightweight spanners of geometric graphs, SIAM J. Comput., 39, 10.1137/080737708
I.A. Kanj, G. Xia, Improved local algorithms for spanner construction, in: ALGOSENSORS, 2010, pp. 1–15.
Keil, 1992, Classes of graphs which approximate the complete Euclidean graph, Discrete Comput. Geom., 13, 10.1007/BF02187821
Li, 2004, Efficient construction of low weighted bounded degree planar spanner, Internat. J. Comput. Geom. Appl., 14, 69, 10.1142/S0218195904001366
Narasimhan, 2007
G. Xia, Improved upper bound on the stretch factor of Delaunay triangulations, in: SOCG, 2011.
G. Xia, L. Zhang, L. College, Improved lower bound for the stretch factor of Delaunay triangulations, in: FWCG, 2010.