Cell cultures from animal models of Alzheimer’s disease as a tool for faster screening and testing of drug efficacy

Fabrizio Trinchese1,2, Shumin Liu1,2, Ipe Ninan1,2, Daniela Puzzo1,2, Joel P. Jacob1, Ottavio Arancio1,3,2,4
1Dementia Research Center, Nathan Kline Institute for Psychiatric Research, Orangeburg
2Department of Psychiatry, New York University School of Medicine, New York
3Department of Pathology, Columbia University, New York
4Department of Physiology, and neuroscience, New York University School of Medicine, New York

Tóm tắt

Approximately 2 million people in the United States suffer from Alzheimer’s disease (AD), which is the most common cause of chronic dementia among the aging population. During the last 7 yr, excellent opportunities to screen drugs against AD have been provided by animal models of the disease. Because even in the fastest model, AD pathology does not start before the end of the second month, it has been necessary to wait at least until that age to inject drugs into the animal to assess whether they prevent, reduce, or revert synaptic impairment, plaque formation, and increase of β-amyloid (Aβ) levels, the main features of the disease. A solution to the problems mentioned above is achieved by the present fast, efficient, and reproducible cultured cell system from animal models of AD or Aβ-associated diseases, for the screening and testing of compounds for the treatment and therapy of AD or Aβ-associated diseases.

Từ khóa


Tài liệu tham khảo

Antonova I., Arancio O., Trillat A. C., Wang H. G., Zablow L., Udo H., et al. (2001) Rapid increase in immunoreactive presynaptic terminals during long-lasting potentiation. Science 294, 1547–1550. Arancio O., Antonova I., Gambaryan S., Lohmann S. M., Wood J. S., Lawrence D. S., and Hawkins R. D. (2001) Presynaptic role of cGMP-dependent protein kinase during long-lasting potentiation. J. Neurosci. 21, 143–149. Arancio O., Kandel E. R., and Hawkins R. D. (1995) Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature 376, 74–80. Bliss T. V. and Collingridge G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39. Calhoun M., Wiederhold K., Abramowski D., Phinney A., Probst A., Sturcheler-Pierrat C., et al. (1998) Neuronal loss in APP transgenic mice. Nature 395, 755–756. Chapman P. F., White G. L., Jones M. W., Cooper-Blacketer D., Marshal V. J., Irizarry, M., et al. (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271–276. Duff K., Eckman C., Zehr C., Yu X., Prada C. M., Perez-tur J., et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713. Frautschy S. A., Yang F., Irrizarry M., Hyman B., Saido T. C., Hsiao K., and Cole G. M. (1998) Microglial response to amyloid plaques in APPsw transgenic mice Am. J. Pathol. 152, 307–317. Hardy J. (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 29556, 28570–26998. Hay J.C. and Scheller R.H. (1997) SNAREs and NSF in tar-geted membrane fusion. Curr. Opin. Cell Biol. 9, 505–512. Holcomb L., Gordon M. N., McGowan E., Yu X., Benkovic S. Jantzen P., et al. (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4, 97–100. Hsia A.Y., Masliah E., McConlogue L., Yu G.-Q., Tatsuno G., Hu K., et al. (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. U. S. A. 96, 3228–3233. Hsiao K., Chapman P., Nilsen S., Heckman C., Harigaya Y., Younkin S., et al. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102. Irizarry M. C., McNamara M., Fedorchak K., Hsiao K., and Hyman B. T. (1997) APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J. Neuropathol. Exp. Neurol. 56, 965–973. Janus C., Pearson J., McLaurin J., Mathews P.M., Jiang Y., Schmidt S. D., et al. (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408, 979–982. King D. L., Arendash G. W., Crawford F., Sterk T., Menendez J., and Mullan M. J. (1999) Progressive and gender-dependent cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer’s Disease. Behav. Brain Res. 103, 145–162. Malgaroli A.and Tsien R.W. (1992) Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature 357, 134–139. Masliah E. (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol. Histopathol. 10, 509–519. McGowan E., Sanders S., Iwatsubo T., Takeuchi A., Saido T., Zehr C., et al. (1999) Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol. Dis. 4, 231–244. Milner B. (1996) Amnesia following operation on the temporal lobes, in Amnesia, Whitty, C. W. M., and Zangwill, O. L., eds., Butterworths, London, UK, pp. 109–133. Mucke L., Masliah E., Johnson W. B., Ruppe M. D., Alford M., Rockenstein E. M., et al. (1994) Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice. Brain Res. 666, 151–167. Mucke L., Masliah E., Yu G.-Q., Mallory M., Rockenstein E. M., Tatsuno G., et al. (2000) High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058. Price D. L. and Sisodia S. S. (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu. Rev. Neurosci. 21, 479–505. Ryan T. A., Reuter H., Wendland B., Schweizer F. E., Tsien R. W., and Smith S. J. (1993) The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724. Sant’Angelo A., Trinchese F., and Arancio O. (2003) Usefulness of behavioral and electrophysiological studies in transgenic models of Alzheimer’s disease. Neurochem. Res. 28, 1009–1015. Selkoe D. J. (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399, A23-A31. Sollner T. and Rothman J. E. (1994) Neurotransmission: harnessing fusion machinery at the synapse. Trends Neurosci. 17, 344–348. Sollner T., Bennett M. K., Whiteheart S. W., Scheller R. H., and Rothman J. E. (1993a) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicledocking, activation, and fusion. Cell 75, 409–418. Sollner T., Sollner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., et al. (1993b) SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324. Sze C. I., Bi H., Kleinschmidt-DeMasters B. K., Filley C. M., and Martin L. J. (2000) Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer’s disease brains. J. Neurol. Sci. 175, 81–90. Trinchese F., Luis S., Baltaglia F., Walter S., Matthews P. M., and Arancio O. (2004) Progressive age-related development of Alzheimers-like pathology in APP/PSI mice. Ann. Neurol. 55, 801–814.