Self-similar p-adic fractal strings and their complex dimensions

Pleiades Publishing Ltd - Tập 1 - Trang 167-180 - 2009
Michel L. Lapidus1, Lũ’ Hùng2
1Department of Mathematics, University of California, Riverside, USA
2Department of Mathematics, Hawai‘i Pacific University, Honolulu, USA

Tóm tắt

We develop a geometric theory of self-similar p-adic fractal strings and their complex dimensions. We obtain a closed-form formula for the geometric zeta functions and show that these zeta functions are rational functions in an appropriate variable. We also prove that every self-similar p-adic fractal string is lattice. Finally, we define the notion of a nonarchimedean self-similar set and discuss its relationship with that of a self-similar p-adic fractal string. We illustrate the general theory by two simple examples, the nonarchimedean Cantor and Fibonacci strings.

Tài liệu tham khảo

V.G. Berkovich, “p-adic analytic spaces,” in Proc. Internat. Congress Math. (Berlin, 1998), Eds. G. Fisher and U. Rehmann, Vol. II, Documenta Math. J. DMV (Extra Volume ICM’ 98), pp. 141–151. D. V. Chistyakov, “Fractal geometry of continuous embeddings of p-adic numbers into Euclidean spaces,” Theor. Math. Phys. 109, 1495–1507 (1996). A. Ducros, “Espaces analytiques p-adiques au sens de Berkovich,” In: Séminaire Bourbaki, 58ème année, 2005–2006, No. 958, Astérisque, Vol. 311, pp. 137–176 (Société Mathématique de France, Paris, 2007). B. Dragovich, “Adelic harmonic oscillator,” Int. J. Mod. Phys. A 10, 2349–2365 (1995). C. J. Everett and S. Ulam, “On some possibilities of generalizing the Lorentz group in the special relativity theory,” J. Combinatorial Theory 1, 248–270 (1966). K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, Chichester, 1990). G.W. Gibbons and S.W. Hawking, (Eds.), Euclidean Quantum Gravity (World Scientific Publ., Singapore, 1993). S. W. Hawking and W. Israel, (Eds.), General Relativity: An Einstein Centenary Survey (Cambridge Univ. Press, Cambridge, 1979). J. E. Hutchinson, “Fractals and self-similarity,” Indiana Univ. Math. J. 30, 713–747 (1981). N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions (Springer-Verlag, New York, 1984). M. L. Lapidus, “Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function,” in Differential Equations and Mathematical Physics (Birmingham, 1990), C. Bennewitz (Ed.), pp. 151–182 (Academic Press, New York, 1992). M. L. Lapidus, In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes (Amer. Math. Soc., Providence, RI, 2008). M. L. Lapidus and Lũ’ Hùng, “Nonarchimedean Cantor set and string,” J. Fixed Point Theory Appl. 3, 181–190 (2008). (Special issue dedicated to the Jubilee of Vladimir Arnold, Vol. I.) Preprint, IHES/M/08/28. M. L. Lapidus and Lũ’ Hùng, “A geometric theory of p-adic fractal strings and their complex dimensions,” in preparation. M. L. Lapidus and H. Maier, “The Riemann hypothesis and inverse spectral problems for fractal strings,” J. London Math. Soc. 52(2), 15–34 (1995). M. L. Lapidus and R. Nest, “Fractal membranes as the second quantization of fractal strings,” in preparation. M. L. Lapidus and E. P. J. Pearse, “Tube formulas and complex dimensions of self-similar tilings,” Preprint, IHES/M/08/27. M. L. Lapidus and E. P. J. Pearse, “Tube formulas for self-similar fractals,” in Analysis on Graphs and Its Applications (P. Exner et al., eds.), Proc. Sympos. Pure Math., Vol. 77, pp. 211–230 (Amer. Math. Soc., Providence, RI, 2008). Preprint, IHES/M/08/28. M. L. Lapidus and C. Pomerance, “The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums,” Proc. London Math. Soc. 66(3), 41–69 (1993). M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Birkhhäuser, Boston, 2000). M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, Springer Monographs in Mathematics (Springer-Verlag, New York, 2006). Lũ’ Hùng, p-Adic Fractal Strings and Their Complex Dimensions, Ph.D. Dissertation (University of California, Riverside, 2007). P. A. P. Moran, “Additive functions of intervals and Hausdorff measure,” Math. Proc. Cambridge Philos. Soc. 42, 15–23 (1946). M. S. Moslehian and G. Sadeghi, “A Mazur-Ulam theorem in non-archimedean normed spaces,” Nonlinear Anal. 69, 3405–3408 (2008); arXiv:0710.0107v1. J. Neukirch, Algebraic Number Theory, A Series of Comprehensive Studies in Mathematics (Springer-Verlag, New York, 1999). L. Notale, Fractal Spacetime and Microphysics: Towards a Theory of Scale Relativity (World Scientific Publ., Singapore, 1993). A. N. Parshin and I. R. Shafarevich, (Eds.), Number Theory, Vol. I, Introduction to Number Theory, Encyclopedia of Mathematical Sciences, Vol. 49, written by Yu. I. Manin and A. A. Panchishkin (Springer-Verlag, Berlin, 1995). E. P. J. Pearse, “Canonical self-similar tilings by iterated function systems,” Indiana Univ. Math. J. 58, 3151–3170 (2007). A. M. Robert, A Course in p-Adic Analysis, Graduate Texts in Mathematics (Springer-Verlag, New York, 2000). W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis, Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, Cambridge, 1984). V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific Publ., Singapore, 1994). I. V. Volovich, “Number theory as the ultimate physical theory,” Preprint, CERN-TH. 4791 (1987). J. A. Wheeler and K.W. Ford, Geons, Black Holes, and Quantum Foam: A Life in Physics (W. W. Norton, New York, 1998).