Fourier-Galerkin Method for Localized Solutions of Equations with Cubic Nonlinearity

M. A. Christou1, C. I. Christov1
1Department of Mathematics, University of Louisiana at Lafayette, Lafayette

Tóm tắt

Using a complete orthonormal system of functions in L 2(−∞ ,∞) a Fourier-Galerkin spectral technique is developed for computing of the localized solutions of equations with cubic nonlinearity. A formula expressing the triple product into series in the system is derived. Iterative algorithm implementing the spectral method is developed and tested on the soliton problem for the cubic Boussinesq equation. Solution is obtained and shown to compare quantitatively very well to the known analytical one. The issues of convergence rate and truncation error are discussed.

Tài liệu tham khảo

J. V. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire, Comp. Rend. Hebd. des Seances de l'Acad. des Sci. 72, 755-759 (1871). J. V. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, Journal de Mathématiques Pures et Appliquées 17, 55-108 (1872). J. P. Boyd, Spectral methods using rational basis on an infinite interval. J. Comp. Phys. 69, 112-142 (1987). J. P. Boyd, Spectral Methods, Springer-Verlag, New York, 1989. J. P. Boyd, The orthogonal rational functions of Higgins and Christov and algebraically mapped Chebyshev polynomials. J. Approx. Theory 61, 98-105 (1990). C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988. C. I. Christov, A complete orthonormal sequence of functions in L2(-∝, ∝) space, SIAM J. Appl. Math. 42, 1337-1344 (1982). C. I. Christov, Fourier-Galerkin algorithm for 2-D localized solutions. Annuaire de l'Univ. Sof., Fac. de Mathématiques et Informatique, 95 (lb.2-Mathematiques Appliquée et Informatique), 169-179 (1995). C. I. Christov and K. L. Bekyarov, A Fourier-series method for solving soliton problems, SIAM J. Sci. Stat. Comp. 11, 631-647 (1990). J. R. Higgins, Completeness and basis properties of sets of special functions, Cambridge University Press, London, 1977. D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. ser.5, 39, 422-443 (1895). N. Wiener, Extrapolation, Interpolation and smoothing of stationary time series, Technology Press MIT and John Wiley, New York, 1949.