Manganese oxide nanocomposites with improved surface area prepared by one-pot surfactant route for electro catalytic and biosensor applications
Tóm tắt
Braunite phase manganese oxide is naturally available in manganese–silicate rocks with minor amount of silicate content. New synthetic route is attempted to prepare the manganese oxide nanoparticle and silica incorporated manganese oxide nanocomposite in the present study. XRD patterns reveal the braunite phase formation for as synthesized manganese oxide nanocomposite and silica incorporated MnO2 nanocomposite materials. Improved BET surface area values are achieved by one step surfactant assisted method (i.e., 82 and 151 m2/g) compared to conventional route prepared manganese oxide nanomaterial. Flaky pastry type morphology was observed for as synthesized Si–MnO2 nanocomposites. Cyclic voltammetry studies predict the electrocatalytic activity of manganese oxide nanoparticle and Si–MnO2 nanocomposite in presence of electroactive redox couple. Si–MnO2 nanocomposite modified glassy carbon (GC) electrode shows the effective electroactive response in presence of Fe2+/Fe3+ redox couple at 0.69 V with current density of 0.343 × 10−5 A/cm2 compared to manganese oxide nanoparticle modified GC electrode. The biosensor responses for ascorbic acid have been tested in the present study and manganese oxide nanoparticle modified GC electrode shows effective response at low concentration of (1 × 10−5 M) ascorbic acid in phosphate buffer solution. Manganese oxide nanoparticle modified electrode shows the better response with current density value of 0.115 × 10−5 A/cm2 compared to Si–MnO2 nanocomposite.
Tài liệu tham khảo
C. Xia, W. Ning, G. Lin, Sens. Actuators B137, 710 (2009)
K.S. Prasad, G. Muthuraman, J.M. Zen, Electroanalysis 20, 1167 (2008)
M.S. El-Deab, S.H. Othman, T. Okajima, T. Ohsaka, J. Appl. Electrochem. 38, 1445 (2008)
J.J. Xu, J.J. Feng, X. Zhong, H.Y. Chen, Electroanalysis 20, 507 (2008)
L. Zhang, L. Kang, H. Lu, Z. Su, J. Mater. Res. 23, 780 (2008)
R.K. Sharma, A.C. Rastogi, S.B. Desu, Electrochem. Acta. 53, 7690 (2008)
J.F. Liu, J. Power Sources 182, 383 (2008)
A. Laforgue, P. Simon, J.F. Fauvarque, J.F. Sarrau, P. Lailler, J. Electrochem. Soc. 148, A1130 (2001)
J. Chang, S. Lee, T. Ganesh, S. Mane, S. Min, S. Lee, S.H. Han, J. Electroanal. Chem. 624, 167 (2008)
C.E. Langley, C. Biljana, C.E. Banks, R.G. Compton, Jpn. Soc. Anal. Chem. 23, 165 (2007)
C. Reed, Y.K. Lee, S. Ted Oyama, J. Phys. Chem. B 110, 4207 (2006)
P.G. Smirniotis, P.M. Sreekanth, D.A. Pen, R.G. Jenkins, Ind. Eng. Chem. Res. 45, 6436 (2006)
J. Huang, Z. Tong, Y. Huang, J. Zhang, Appl. Catal. B: Environ. 78, 309 (2008)
M.A. Wolfovich, R. Jothiramalingam, M.V. Landau, M. Herskowitz, B. Viswanathan, T.K. Varadarajan, Appl. Catal. B: Environ. 59, 91 (2005)
R. Jothiramalingam, B. Viswanathan, T.K. Varadarajan, Catal. Commun. 6, 41 (2005)
B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, D.Y. Zhao, Adv. Mater. 15, 1370 (2003)
Y.F. Han, F. Chen, Z. Zhong, K. Ramesh, L. Chen, E. Widjaja, J. Phys. Chem. B 110, 24450 (2006)
X. Zhang, W. Yang, D.G. Evans, J. Power Sourses 184, 695 (2008)
B.K. Mohapatra, B. Nayak, J. Asian Earth Sci. 25, 773 (2005)
I. Groma, F. Szekely, J. Appl. Cryst. 33, 1328 (2000)
D.J.M. Bevan, R.L. Martin, J. Solid State Chem. 181, 2250 (2008)
J.P.R. De Villiers, Am. Miner. 60, 1098 (1975)
R.A. Robie, S.R. Huebner, B.S. Hemingway, Am. Miner. 80, 560 (1995)
G. Marban, T. Valdes-Solıs, A.B. Fuertes, Catal. Lett. 118, 8 (2007)
S. Yao, J. Xu, Y. Wang, X. Chen, Y. Xu, S. Hu, Anal. Chim. Acta. 557, 78 (2006)
S.A. Kumar, P.H. Lo, S.M. Chen, Biosens. Bioelectron. 24, 518 (2008)
X. Cui, G. Lin, Y. Lin, Nanomed. Nanotechnol. Biol. Med. 1, 130 (2005)
X. Yang, X. Chen, X. Zhang, W. Yang, D.G. Evans, Sens. Actuators B 129, 784 (2008)
L. Zhang, Z. Wang, Y. Xia, G. Kai, W. Chen, K. Tang, Crit. Rev. Biotechnol. 27, 173 (2007)
Z. Chen, T.E. Young, J. Ling, S.-C. Chang, D.R. Gallie, PNAS 100, 3525 (2003)