Influence of Si species on intergrowth and anisotropic crystal growth of silicalite-1

Springer Science and Business Media LLC - Tập 21 - Trang 337-344 - 2014
Takayuki Ban1, Shota Oishi1, Yutaka Ohya1
1Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan

Tóm tắt

Silicalite-1 crystals were hydrothermally synthesized from silica gels prepared under different conditions. The influence of the state of Si species in the silica gels and the concentrations of silicate ions and a template agent in the reaction sols on crystal growth of silicalite-1 was examined. The use of silica gels with a high degree of condensation of Si species resulted in the intergrowth of silicalite-1 crystals, whereas a low degree of condensation of Si species led to coffin-shaped crystals. Thus, the degree of condensation of Si species had significant influence on the intergrowth of silicalite-1 crystals. Moreover, at a low silicate concentration, silicalite-1 crystals elongated along the c-axis were obtained. With increasing silicate concentration in the reaction sols, the aspect ratio of silicalite-1 decreased. Furthermore, with decreasing the amount of N(C3H7) 4 + used as a template agent, the silicalite-1 crystals became larger isotropically. Thus, the growth direction of silicalite-1 crystals was dependent on silicate ion concentration in the reaction sols, but not on N(C3H7) 4 + concentration.

Tài liệu tham khảo

G. Bonilla, M. Tsapatsis, D.G. Vlachos, G. Xomeritakis, J. Membr. Sci. 182, 103 (2001) M.A. Snyder, Z. Lai, M. Tsapatsis, D.G. Vlachos, Micoporous Mesoporous Mater. 76, 29 (2004) L. Karwacki, M.H.F. Kox, D.A.M. de Winter, M.R. Drury, J.D. Meeldijk, E. Stavitski, W. Schmidt, M. Mertens, P. Cubillas, N. John, A. Chan, N. Kahn, S.R. Bare, M. Anderson, J. Kornatowski, B.M. Weckhuysen, Nat. Mater. 8, 959 (2009) N. Kamiya, W. Iwama, T. Kudo, T. Nasuno, S. Fujiyama, K. Nishi, Y. Yokomori, Acta Crystallogr. B 67, 508 (2011) G. Reck, F. Marlow, J. Kornatowski, W. Hill, J. Caro, J. Phys. Chem. 100, 1698 (1996) N. Kamiya, T. Oshiro, S. Tan, K. Nishi, Y. Yokomori, Microporous Mesoporous Mater. 169, 168 (2013) H. Morell, K. Angermund, A.R. Lewis, D.A. Brouwer, C.A. Colin, H. Gies, Chem. Mater. 14, 2192 (2002) M. Vilaseca, E. Mateo, L. Palacio, P. Pradanos, A. Hernandez, A. Paniagua, J. Coronas, J. Santamaria, Microporous Mesoporous Mater. 71, 33 (2004) Z.A.D. Lethbridge, J.J. Williams, R.I. Walton, K.E. Evans, C.W. Smith, Microporous Mesoporous Mater. 79, 339 (2005) S. Shimizu, H. Hamada, Angew. Chem. Int. Ed. 38, 2725 (1999) A. Kuperman, S. Nadimi, S. Oliver, G.A. Ozin, J.M. Garcés, M.M. Olken, Nature 365, 239 (1993) T. Kadono, M. Tajima, T. Shimomura, N. Imawaka, S. Noda, T. Kubota, Y. Okamoto, Microporous Mesoporous Mater. 115, 454 (2008) F. Gao, G. Zhu, X. Li, B. Li, O. Terasaki, S. Qiu, J. Phys. Chem. B 105, 12704 (2001) M. Navarro, E. Mateo, B. Diosdado, J. Coronas, CrystEngComm 14, 6016 (2012) N. Kamiya, Y. Torii, M. Sasaki, K. Nishi, Y. Yokomori, Z. Kristallogr. 222, 551 (2007) C. Shao, X. Li, S. Qiu, F.-S. Xiao, O. Terasaki, Microporous Mesoporous Mater. 39, 117 (2000) T. Ban, H. Mitaku, C. Suzuki, J. Matsuba, Y. Ohya, Y. Takahashi, J. Cryst. Growth 274, 594 (2005) T. Ban, H. Mitaku, C. Suzuki, T. Kume, Y. Ohya, Y. Takahashi, J. Porous Mater. 12, 255 (2005) I. Halasz, M. Agarwal, R. Li, N. Miller, Microporous Mesoporous Mater. 135, 74 (2010) I. Halasz, A. Kierys, J. Goworek, H. Liu, R.E. Patterson, J. Phys. Chem. C 115, 24788 (2011) K.-H. Schnabel, G. Finger, J. Kornatowski, E. Löffler, C. Peuker, W. Pilz, Microporous Mater. 11, 293 (1997) J. A. Dean, Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill, 1998), pp. 8.24-8.72 A. Bertoluzza, C. Fagnano, M.A. Morelli, M. Guglielmi, G. Scarinci, N Maliavski. J. Raman Spectrosc. 19, 297 (1988) K. Matsui, H. Satoh, M. Kyoto, J. Ceram. Soc. Jpn. 106, 528 (1998) W. Schmidt, U. Wilczok, C. Weidenthaler, O. Medenbach, R. Goddard, G. Buth, A. Cepak, J. Phys. Chem. B 111, 13538 (2007)